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Abstract. We examine the relationship between the mean
and the variability of Arctic sea-ice coverage and volume in a
large range of climates from globally ice-covered to globally
ice-free conditions. Using a hierarchy of two column models
and several comprehensive Earth system models, we consol-
idate the results of earlier studies and show that mechanisms
found in simple models also dominate the interannual vari-
ability of Arctic sea ice in complex models. In contrast to
predictions based on very idealised dynamical systems, we
find a consistent and robust decrease of variance and auto-
correlation of sea-ice volume before summer sea ice is lost.
We attribute this to the fact that thinner ice can adjust more
quickly to perturbations. Thereafter, the autocorrelation in-
creases, mainly because it becomes dominated by the ocean
water’s large heat capacity when the ice-free season becomes
longer. We show that these changes are robust to the na-
ture and origin of climate variability in the models and do
not depend on whether Arctic sea-ice loss occurs abruptly
or irreversibly. We also show that our climate is changing
too rapidly to detect reliable changes in autocorrelation of
annual time series. Based on these results, the prospects of
detecting statistical early warning signals before an abrupt
sea-ice loss at a “tipping point” seem very limited. However,
the robust relation between state and variability can be use-
ful to build simple stochastic climate models and to make
inferences about past and future sea-ice variability from only
short observations or reconstructions.

1 Introduction

The temporal evolution of Arctic sea ice in recent decades
can be described by the superposition of a monotonous re-
sponse to greenhouse gas forcing and internal climate vari-
ability (Notz and Marotzke, 2012). The latter determines the
occurrence of extreme events, is key for the local perception
of climate change (Hansen et al., 2012; Huntingford et al.,
2013), and is closely linked to the stability of the mean state
(Scheffer et al., 2009) and its sensitivity to forcing (Leith,
1975). In this contribution, we examine how the mean state
and the variability of Arctic sea ice interact across a wide
range of climate states. Our focus on Arctic sea ice is moti-
vated by the fact that mean climate and variability are pro-
jected to show particularly large changes in the Arctic (Man-
abe and Wetherald, 1975; Huntingford et al., 2013), and pro-
cesses linked to sea ice were put forward as major causes
of these trends (Hall, 2004; Stouffer and Wetherald, 2007).
However, the role of thermodynamic processes within Arctic
sea ice itself, and its influence on the spectrum of the vari-
ability, has not been discussed in this context. Understanding
the temporal evolution of variability in sea-ice area and vol-
ume also has practical consequences for example regarding
the economic use of the Arctic. Moreover, understanding the
relation between the mean climate and its variability will al-
low us to draw conclusions about the climate variability in
the Earth’s deep past, something that is difficult to recon-
struct directly (White et al., 2010; Kemp et al., 2015) and
that can help to build simple stochastic climate models.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1632 S. Bathiany et al.: Statistical indicators of Arctic sea-ice stability

Our focus is also driven by earlier speculations that Arctic
sea-ice loss could reach a tipping point, i.e. a certain forcing
where it would accelerate substantially (Lindsay and Zhang,
2005; Winton, 2006). Such a change is loosely referred to as
“abrupt” if the acceleration is due to mechanisms internal to
the climate system (such as the positive ice–albedo feedback)
whereas the forcing changes linearly over time (Rahmstorf,
2001; National Research Council, 2002). In the extreme case,
the tipping point would correspond to a bifurcation point,
a point of no return where sea ice is suddenly and irre-
versibly lost. While this “small ice-cap instability” occurred
in simplified models (North, 1984; Thorndike, 1992; Eisen-
man and Wettlaufer, 2009; Abbot et al., 2011), more compre-
hensive models show a more gradual and reversible sea-ice
loss in scenarios of the future (Armour et al., 2011; Tietsche
et al., 2011; Boucher et al., 2012; Ridley et al., 2012; Li et
al., 2013). Consequently, Wagner and Eisenman (2015a) re-
cently showed in detail how resolving the seasonal cycle and
latitudinal differences can eliminate bifurcations in sea-ice
models, explaining why oversimplified models lead to wrong
conclusions. Nonetheless, comprehensive models still differ
in how abruptly Arctic sea-ice area and volume can change
(Bathiany et al., 2016). Given the large model uncertainties
even in comprehensive models, it is worthwhile to investigate
whether changes in certain aspects of the variability are spe-
cific to the existence of abrupt or even irreversible changes
in the future. Observations might then provide an alternative
source of information and indicate which model is most re-
liable in its prediction. Interestingly, when cooling the Earth
instead of warming it, even comprehensive models show bi-
furcations, in agreement with simple models (Budyko, 1969;
Sellers, 1969). For example, in a complex general-circulation
model with current continental distribution and solar insola-
tion, Marotzke and Botzet (2007) identified a globally ice-
covered stable state analogous of the “Snowball Earth” con-
ditions in the Neoproterozoic (Pierrehumbert et al., 2011).
Ferreira et al. (2011) and Rose et al. (2013) even found three
stable states in a complex model with idealised ocean ge-
ometry. Climate variability plays an important role for the
likelihood of transitions between such states, and for their
reversibility (Lee and North, 1995), and thus needs to be con-
sidered to understand the evolution of climate in the Earth’s
deep past.

Furthermore, previous studies suggested that natural cli-
mate variability can be an indicator of climate stability and
provide “early warning signals” of an approaching tipping
point (Scheffer et al., 2009). The phenomenon of statisti-
cal stability indicators has long been known in mathemat-
ics (Wiesenfeld, 1985) and has been applied to the prob-
lem of climate tipping points (Kleinen et al., 2003; Held
and Kleinen, 2004). The theory applies to dynamical systems
close to a stable fixed point that slowly destabilises over time.
As the forces that restore a disturbed system towards equilib-
rium become weaker, the return rate to equilibrium becomes
smaller, leading to an increasing relaxation timescale. Inter-

estingly, this effect has been found in the simple determin-
istic climate model of Budyko (1969) when approaching the
Snowball Earth bifurcation (Held and Suarez, 1974). In the
presence of small perturbations in the form of a stochastic
term added on the dynamic equation, it is often argued that
“slowing down” must cause an increase in autocorrelation
and variance when approaching the tipping point (Scheffer
et al., 2009; Ditlevsen and Johnsen, 2010). In principle, this
concept also applies to systems whose solution is not con-
stant but periodic in time (Wiesenfeld and McNamara, 1986):
by recording the state of a system at the same point in time
during every period, a periodic solution can be transformed
to a fixed point. However, the occurrence of statistical sta-
bility indicators relies on several assumptions such as the
approximation of the system is one-dimensional (Held and
Kleinen, 2004; Bathiany et al., 2013a), the variability of the
system results from small white noise external to the system
(Dakos et al., 2012b), and the system is close to its equilib-
rium solution. None of these assumptions are truly justified
in the context of anthropogenic climate change. Even very
simple stochastic models can deviate from the theory of sta-
tistical stability indicators due to the interactions of deter-
ministic nonlinearities and noise (Dakos et al., 2012b; Bathi-
any et al., 2013a). Therefore, it is necessary to investigate
whether the approach could potentially yield meaningful re-
sults in the case of Arctic sea ice and how the results depend
on the model formulation. Moreover, even in cases when all
assumptions hold, it is often not clear in practice how close
a system needs to be to a bifurcation point for the theory to
apply and how slowly the destabilisation needs to occur to
allow a significant detection of trends in variance or autocor-
relation. In this study, we therefore also assess the practical
applicability of statistical stability indicators to the problem
of Arctic sea-ice loss by analysing simulations from models
of very different complexity.

It follows already from previous studies that the total
hemispheric ice area is not a suitable property to infer sea-
ice stability. First, the distribution of continents determines
where sea ice can occur and thus determines the variability
of total sea-ice area (Goosse et al., 2009; Eisenman, 2010):
while sea-ice area in the Arctic ocean is free to fluctuate,
further south it is limited to the North Atlantic and North
Pacific. The rest of the area is covered by continents which
therefore “mute” the variability of total sea-ice area (Eisen-
man, 2010). Second, when the latitude of the sea-ice edge
approaches the pole, there is less and less total area available
in the (idealised) ice-covered circle (Goosse et al., 2009).
Third, it has been noted that when sea ice becomes very thin,
its open-water formation efficiency increases, meaning that
small fluctuations in volume can lead to large fluctuations
in area coverage (Holland et al., 2006; Goose et al., 2009;
Notz, 2009). As all these effects result from geometrical con-
straints, they do not reflect the stability of the system in terms
of its dynamical response to perturbations. We therefore fo-
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cus on sea-ice thickness (or volume in a given area) in most
of this study.

Regarding sea-ice volume and its relaxation time, previ-
ous studies rely on a small number of very idealised sea-
ice models. For example, Merrifield et al. (2008) find in-
creasing variance and an increasing relaxation time before
an abrupt loss of summer sea ice in a simple model, appar-
ently corroborating the classical concept of early warnings.
However, the seasonal cycle is only parameterised crudely in
their model, lumping processes of melting and freezing to-
gether in one equation. In a version of the simple column
model by Eisenman and Wettlaufer (2009), Moon and Wet-
tlaufer (2011, 2013) and Eisenman (2012) showed a rela-
tively complex evolution of the system’s timescale over a
range of long-wave forcing with decreasing and increasing
regimes due to a continuously changing balance of feed-
backs. The most important positive feedback in this context
is the ice–albedo feedback: due to the ocean’s low albedo
compared to sea ice, ice loss and decreased surface albedo
enhance each other. The most important negative feedback is
the growth–thickness feedback: the thinner the ice becomes,
the faster it can regrow due to an increased heat flux through
the ice (Thorndike et al., 1975). Moreover, the relatively large
timescale of warming or cooling of the ocean’s mixed layer
becomes important once sea ice is not present during a sub-
stantial part of the year. Using a latitudinally explicit version
of the model by Eisenman and Wettlaufer (2009), Wagner
and Eisenman (2015b) therefore argue that the mixed-layer
effect can raise false alarms of abrupt ice loss.

The above studies provide several scattered indications
how the variability of sea ice may be linked to the mean cli-
mate. However, they are restricted to a small number of very
simple sea-ice models that do not distinguish between ice
area and volume and that are usually deterministic. As many
nonlinear processes are disregarded that can affect the vari-
ability in non-intuitive ways, these studies allow only limited
conclusions about the real world. In this study we aim for a
systematic consolidating assessment by applying a hierarchy
of sea-ice models that includes not only simple column mod-
els with one state variable but also comprehensive Earth sys-
tem models. Besides their different complexity, these models
represent different scenarios of future sea-ice loss, namely a
bifurcation-induced abrupt loss, an abrupt but reversible loss
and a gradual sea-ice loss. This allows us to demonstrate and
explain a robust link between the mean, and the autocorrela-
tion and variance of Arctic sea-ice volume that is not model
specific. In Sect. 2, we introduce the models we apply, ex-
plain their most important differences, and outline the set-
up of the simulations. In Sect. 3 we analyse the results of
these simulations, and we provide our conclusions in Sect. 4.
Moreover, Appendix A provides additional information on
the simplest of the models and the changes we make to it in
order to demonstrate different mechanisms.

2 Models and methodology

2.1 Models

We apply different models in our study, all of which include a
continuous annual cycle, ice–albedo feedback, and growth–
thickness feedback and are of very different complexity.

1. The box model by Eisenman (2012) with default param-
eters, here referred to as E12: a slightly simplified ver-
sion of the model by Eisenman and Wettlaufer (2009). It
consists of a simple energy balance of the ocean’s mixed
layer and describes the evolution of only one state vari-
able, the enthalpy E. In the presence of sea ice, E is neg-
ative and proportional to the ice thickness, while dur-
ing ice-free conditions, E is positive and proportional
to the mixed-layer temperature. Hence, the model does
not distinguish between ice–area coverage and ice vol-
ume because its ice-thickness distribution is a slab of ice
with uniform thickness. The model equations are taken
from Eisenman (2012) and reproduced in Appendix A.
The effect of CO2 is represented implicitly in the sur-
face net long-wave balance Lm, which is our control
parameter for this model. The model yields one stable
solution with a perennial ice cover for present-day con-
ditions, Lm = 1.25 (as the model is non-dimensional, E
and Lm have no units). With decreasing Lm, the ice be-
comes thinner and the transition to a seasonal ice cover
is gradual (Fig. 1a). In contrast, at Lm ≈ 0.925, the re-
maining winter ice disappears abruptly due to a bifur-
cation in the system. Beyond this bifurcation point the
only remaining stable cycle is ice free during the whole
year.

2. The box model by Eisenman (2007), referred to as E07:
like E12, it solves the energy balance of the mixed layer,
taking solar radiation and atmospheric composition as
boundary conditions. For the model equations including
their derivation see Eisenman (2007). In contrast to the
model by Eisenman (2012), several variables are explic-
itly modelled by ordinary differential equations: the ice-
area coverageA, the ice volume V , the surface tempera-
ture of the ice Ti, and the temperature of the mixed layer,
Tml. The ice has only a single thickness determined from
h= V/A. The evolution of ice area is described by a pa-
rameterisation based on Hibler (1979). This allows one
to explicitly distinguish sea-ice area from sea-ice vol-
ume. Atmospheric CO2 is prescribed and given as a fac-
tor multiplied to the present-day concentration. Due to
the fact that many processes have been intentionally ne-
glected, the original model is rather insensitive to CO2.
To obtain a similar sensitivity than with the comprehen-
sive Earth system model of the Max Planck Institute
for Meteorology (MPI-ESM) we have added an addi-
tional flux of 16 Wm−2 per CO2 doubling to the down-
welling long-wave radiation at the surface (Eq. 30 in
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(a) (b) (c)

Eisenman (2012) Eisenman (2007)

Figure 1. Response of the two column models to warming. (a) Enthalpy versus surface long-wave balance Lm in E12. The horizontal line
demarcates between positive E (open water) and negative E (ice-covered ocean). (b) Ice-area fraction and (c) ice volume (given as an
equivalent thickness) versus CO2 (given as multiples of the pre-industrial value) in E07. Each dot represents a time mean over the season
indicated in the legend of subfigure (a).

Eisenman, 2007). Similar to E12, the model shows a
gradual loss of summer sea ice but an abrupt loss of
winter sea ice under warming (Fig. 1b, c). The abrupt
winter ice loss mainly results from the fact that the large
ice area that forms each winter does not form anymore
when the ocean no longer cools to the freezing temper-
ature (Bathiany et al., 2016). In contrast to a bifurcation
that results from a positive feedback, this abrupt change
at a threshold is reversible. As the ice–albedo feedback
is active also in E07, it produces a regime with multi-
ple solutions around the critical CO2 value. However,
this regime is extremely small and thus not practically
relevant.

3. MPI-ESM (Giorghetta et al., 2013): in comparison to
the two box models, the MPI-ESM is much more com-
plex. As a spatially explicit, comprehensive model, it
describes a large number of processes considered rele-
vant for the evolution of sea ice, including mechanical
thickness redistribution and horizontal transport. De-
spite this huge process complexity, the description of
the ice-thickness distribution is relatively simple (Notz
et al., 2013): similar to E07, only one thickness class is
used and the sea-ice area is calculated using the param-
eterisation by Hibler (1979). A further similarity with
E07 is that an abrupt loss of winter sea-ice area oc-
curs due to the simple representation of the model’s ice-
thickness distribution and the homogeneity of the Arc-
tic Ocean (Bathiany et al., 2016). The abrupt ice loss is
reversible (Li et al., 2013) and is caused by the same
threshold effect as in E07 (Bathiany et al., 2016).

4. We also analyse eight additional comprehensive mod-
els from the Coupled Model Intercomparison Project 5
(CMIP5), using simulations of the historical period, the
RCP8.5 scenario and its extension until the year 2300.
The models are all the available models that lose their
Arctic winter sea ice in these simulations. The level of
complexity in these models is comparable to MPI-ESM,

but some of them explicitly resolve several ice-thickness
classes on the subgrid scale. While one of the models
(CSIRO-Mk3-6-0) also produces an abrupt loss of win-
ter sea-ice area like MPI-ESM, most models show a re-
treat of winter sea ice that is gradual (Hezel et al., 2014),
though faster than the preceding summer sea-ice loss
(Bathiany et al., 2016).

2.2 Methods

To investigate how the relaxation time, variance, and auto-
correlation in the models vary with CO2, we perform three
types of experiments that are reported in Sects. 3.1, 3.2, and
3.3 respectively and whose technical details we address in
these sections.

1. For the two column models E12 and E07 we perform
numerical perturbation experiments where we run each
model to its equilibrium annual cycle, then suddenly
perturb it away from this reference solution by some
small amount x0 and measure the rate of return towards
the reference solution. It follows from a linearisation of
the system that the anomaly x decays exponentially over
time t :

x = x0e
(−t/τ ). (1)

In systems with a time-independent solution, the relax-
ation timescale τ can essentially be obtained from only
one specific state x at a time t by rearranging Eq. (1):

τ =−
t

ln
(
x
x0

) . (2)

Due to the permanent change in the balance of feed-
backs during the annual cycle, the return rate in the
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models we use depends on the time of year. To obtain a
good estimate of the anomaly decay from year to year,
we store t and x on 21 December in each year (the result
is not sensitive to the choice of the date). We obtain the
relaxation time τ from a linear regression of these an-
nually resolved time series by regressing the numerator
versus the denominator of Eq. (2).

2. For both column models, we perform stationary sim-
ulations and calculate the state variables’ statistics.
For each of 50 different CO2 levels we simulate
100 000 years under constant conditions. We then com-
pute seasonal means for winter sea ice (averages over
March to May), summer sea ice (averages over Septem-
ber to November), March and September. The defini-
tion of winter and summer sea ice captures the months
of minimum and maximum sea-ice volume in the mod-
els which lags the annual cycle of insolation. The time
series of seasonal or monthly averages have annual res-
olution and are then used to calculate the autocorrela-
tion (with a lag of 1 year) and variance. With this ap-
proach we again focus on the effective relaxation time
from year to year and not the transient development of a
perturbation within a year. In contrast to approach 1, the
simulations involve stochastic terms that we add to the
deterministic model equations. This involves choices on
the place these terms are introduced in the equations
(noise source), the magnitude of the noise (noise level),
and its spectrum (colour).

3. We analyse the trends of variance and autocorrelation
in transient simulations of all models except E12 us-
ing a sliding window approach. As in the case of sta-
tionary simulations, all time series here are seasonal
means, and hence the time series have annual resolution.
In particular, we analyse a simulation from MPI-ESM
where CO2 increases linearly until it has quadrupled af-
ter 2000 years. This simulation has been performed and
reported by Li et al. (2013). We perform similar sim-
ulations with E07, using different experiment lengths
and 1000 realisations per experiment. We also apply
this method to the combined historical and RCP8.5 sce-
nario simulations from CMIP5. Such transient simula-
tions with continuously increasing CO2 concentration
more closely describe the ongoing change of the real cli-
mate system than the idealised, stationary experiments
described before.

3 Results

3.1 Deterministic perturbation experiments

We begin by analysing how the response time τ of the model
by Eisenman (2012) depends on the surface long-wave bal-
anceLm (Fig. 2a). To this end, we perturb the state variableE

(c) (d) 

(b) (a) 

Figure 2. Relaxation timescale in Eisenman’s (2012) box model for
different combinations of mechanisms. (a) Original model; (b) orig-
inal model but with disabled ice–albedo feedback; (c) like (b) but
without growth–thickness feedback; (d) like (b) but with only half
the default ocean heat capacity. The vertical shaded lines indicate
the values of Lm where the annual minimum (red) and maximum
(blue) ice volume reaches 0.

by +0.005 and measure the decay rate over 2 years. The de-
cay rate is thus determined from three points (start time, end
of year one, and end of year two). Using more years leads to
the same results but fails in cases when the system is very
stable because the anomaly then becomes too small to be
measured after only a few years. In agreement with Eisen-
man (2012) and Moon and Wettlaufer (2011), the response
time shows a characteristic double-peak when increasing
CO2 (decreasing Lm). The first peak occurs at Lm ≈ 1 where
the summer ice is lost and the ice–albedo feedback is sub-
stantially strengthened due to the exposed open water dur-
ing a growing period during the year. The second peak oc-
curs at the bifurcation point Lm ≈ 0.93 where the winter sea
ice vanishes. To this extent, the system is in agreement with
dynamical-systems theory, which predicts a slowing down as
a result of increasing positive feedbacks.

To show that both peaks are indeed caused by the ice–
albedo feedback, we perform additional experiments where
this feedback is switched off. Following Eisenman (2012),
we do this by setting the albedo difference between ice and
water to 0. Appendix A explains the changes we make to the
model equations in order to switch off certain mechanisms.
Figure 2b shows the relaxation time τ for the model with-
out ice–albedo feedback but no other changes. Obviously, the
range of Lm over which a complete ice loss occurs is much
larger due to the removal of a positive feedback. The most
striking change in the evolution of τ is that the bifurcation
as well as the double peak in the relaxation time have disap-
peared. The role of the ice–albedo feedback in E12 has also
been analysed analytically by Moon and Wettlaufer (2011),
who obtained the same result.

www.the-cryosphere.net/10/1631/2016/ The Cryosphere, 10, 1631–1645, 2016



1636 S. Bathiany et al.: Statistical indicators of Arctic sea-ice stability

Another striking feature in Figs. 2a and b is the large
regime of decreasing τ from preindustrial conditions up to
shortly before the loss of summer sea ice. This decline re-
sults from the fact that the heat conduction through the ice
becomes more efficient with decreasing thickness. This is
important during freezing conditions when the heat from the
ocean has to diffuse through the ice before it can be radi-
ated away from the ice’s surface. Therefore, thin ice grows
faster than thick ice, and the thinner the sea ice becomes, the
more rapidly it can adjust to perturbations. Figure 2c docu-
ments the validity of this interpretation: in addition to switch-
ing off the ice–albedo feedback, we also remove the growth–
thickness feedback from the equations. To still obtain a stable
system, the removed stabilising feedback is replaced by the
negative Planck feedback that is also active in the ice-free
season in the default model (see Appendix A). As a result,
the relaxation time is constant in the regimes of perennial
ice cover or open ocean. The fact that the response time de-
creases with ice thickness has implications for the transition
to a Snowball Earth state: cooling the climate towards such a
state will result in an increasing autocorrelation and variance,
as a spatially explicit version of E12 now also shows (Wag-
ner and Eisenman, 2015b). However, we stress that this effect
is not a good example of successful “early warning signals”:
as the growth–thickness relationship is independent of the
ice–albedo feedback and the existence of a bifurcation, vari-
ance and autocorrelation would also increase in absence of a
catastrophic transition to a Snowball Earth state. Of course,
knowing the variance of a system is still useful to estimate
the probability of a transition to an alternative state if it is
already known to exist.

A third alteration to the model reveals the reason for the
increase of τ in the regime of seasonal sea ice (Fig. 2d). The
difference to the version in Fig. 2b is that we halve the ef-
fective heat capacity of the ocean’s mixed layer (e.g. rep-
resenting a more shallow mixed layer). Obviously, this re-
duces the relaxation time for the ice-free system, because
the model then simply consists of a well-mixed box of water
whose heating or cooling rate is proportional to its mass. The
warmer the climate becomes, the longer the ice-free season
is and the more the system’s effective timescale approaches
the timescale of an ice-free ocean. As this timescale is longer
than the one of the thin sea ice, a “slowing down” occurs.
Therefore, this increase in relaxation time is not related to
any bifurcation approaching (there is none in Fig. 2b–d) or
in fact to any positive feedback. This specific result has also
been obtained in the latitudinally resolved version of E12 by
Wagner and Eisenman (2015b).

In the following, we go a step further and show that the
above results also hold in more complex models. We begin
with the second column model, E07. Due to the four state
variables in this model, it has to be decided how to perturb the
system in the numerical perturbation experiments. In princi-
ple, a system responds differently depending on which state
variable is perturbed. While the water’s large specific heat ca-

(a) (b)

Default model Disabled ice-albedo feedback

Figure 3. Relaxation timescale in Eisenman’s (2007) box model for
(a) the original model and (b) with disabled ice–albedo feedback.
The vertical shaded lines indicate the values of CO2 where the an-
nual minimum (red) and maximum (blue) ice volume reaches 0.

pacity and latent heat of fusion determine the long-term slow
response of the system, perturbations of the radiative fluxes
decay very quickly. Our numerical perturbation experiment
for E07 consists in a perturbation of Tml by +0.2 K. For the
determination of the relaxation time via regression, we use
years 2 and 3 after the perturbation is applied, ensuring that
anomalies of the fast modes have already decayed after the
first year.

Interestingly, for the loss of summer sea ice E07 displays
an evolution of τ that matches the results from E12 with fixed
albedo (Fig. 2b): a regime of decreasing τ during the loss of
summer sea ice is followed by a regime of slightly increasing
τ after the complete summer sea-ice loss (Fig. 3a). For winter
sea ice, in contrast, results with E07 match the evolution of
E12 with interactive albedo, with a narrow peak in relaxation
just before the loss of winter sea ice. This peak disappears
when the albedo feedback is disabled in E07, while the re-
sponse time for the loss of summer sea ice remains largely
unchanged (Fig. 3b). This demonstrates that the ice–albedo
feedback is of secondary importance for the evolution and
stability of summer sea ice in E07 (except at the very point of
abrupt winter ice loss). It is important to note that both mod-
els roughly show the same evolution of the relaxation time
(decreasing during summer ice loss, increasing thereafter),
regardless of whether there is a bifurcation or any abrupt
change approaching or not.

3.2 Stationary stochastic simulations

In natural systems, the relaxation time usually cannot be
measured or calculated as directly as in models. However,
one can hope to measure the system’s response to natural ex-
ternal perturbations indirectly in the form of its variance and
autocorrelation. We therefore investigate in stochastic ver-
sions of the two column models whether these indicators re-
flect the changes in timescale. In each experiment, we intro-
duce noise in one of three terms of the equations: to mimic
variability in the ocean heat flux (σOHF), we added a Gaus-
sian white noise term to Eq. (A1) (Appendix A). To introduce
noise to the radiative fluxes, we added the noise term on the
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σOHF σLW σSW

Figure 4. Variance (var) and autocorrelation (AC) of state E as a function of long-wave balance Lm in the model E12 with large red noise.
In each column, the noise term has been introduced to one of three different terms, namely the ocean heat flux (OHF), long-wave radiative
balance (LW), and short-wave radiative balance (SW). Winter sea ice is shown in blue and summer sea ice in red (seasons as in Fig. 1). The
vertical shaded lines indicate the values of Lm where the annual minimum (red lines) and maximum (blue lines) ice volume reaches 0.

radiative balance A (Eq. A2) to perturb the long-wave bal-
ance (σLW) or on S (S = 1− Sa cos2πt) in Eq. (A2) to per-
turb the short-wave balance (σSW). We also distinguish small
and large noise, as well as white and red noise. In the case of
small noise, we choose the noise level in a way that the total
variance of E is in the order of 10−9, i.e. much smaller that
the amplitude of an annual cycle. In the case of large noise,
we adjust the noise level such that the system’s stochastic
variability is roughly an order of magnitude smaller than the
amplitude of the annual cycle, similar to the situation in the
real world. In the case of red noise, we model the exter-
nal perturbations as an autoregressive process of order one
(AR(1) process) with a decorrelation time of 180 days in case
of mixed layer energy and 10 days for atmospheric radiation.

Figure 4 shows results for large red noise for all three
noise sources. Interestingly, the specific choices for the noise
terms hardly affect the results. When introducing small noise
to the equations, the evolution of variance and autocorrela-
tion closely follow the results we obtained from the pertur-
bation experiments (Fig. 2a), independent of the noise type.
Due to the low temperatures and the high growth rate of thin
ice, the ice coverage A is always close to 1 in winter and
has very small variance regardless of the variability of other
variables. In contrast to Fig. 2a, the second peak produced by
the ice–albedo feedback is not as pronounced in Fig. 4. This
partly results from the lower resolution of the figure (associ-
ated with the much larger computational demand) but mostly
due to the fact that the natural variability causes the system
to cross the tipping point before the deterministic bifurcation
point is reached. However, even in the case of large red noise,

the results are qualitatively similar to Fig. 2a as long as the
noise is still small enough to not destroy the whole bifurca-
tion structure of the system. The reason is that the timescales
of the imposed variability are still smaller than the typical
response time of our system, consisting of the ocean mixed
layer and the sea ice. In this regard, the model still sees the
imposed noise as white, and the autocorrelation we find is
determined by the system’s timescale and not the timescale
of the red noise. This explains the invariance of the results to
the noise type.

In the stochastic experiments with E07, we introduce the
stochastic terms in the same way as in the case of E12, and
we find the same robustness to noise source, level, and colour
(Fig. 5). Naturally, the variance of the summer sea-ice area
shows a distinct peak before the thickness approaches 0 be-
cause A becomes very sensitive to small perturbations in V
(first row in Fig. 5). The peak occurs when fluctuations in
A are least affected by the lower and upper limits, A= 0
andA= 1, and variance decreases thereafter because a larger
fraction of the summer is already ice free, thus reducing
the possible total variability. As sea ice disappears first in
September, the variability peak occurs first in this month.
The increased open-water formation efficiency before total
ice loss has been reported in previous studies (Holland et al.,
2006; Goosse et al., 2009) and is most evident during the
gradual process of summer ice loss (around CO2≈ 1.9). The
phenomenon is confined to a very narrow parameter regime
for the abrupt winter ice loss around CO2≈ 3.4 because the
rapid growth of new ice each winter tends to keep A close to
1 until shortly before total ice loss (Bathiany et al., 2016).
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σOHF σLW σSW

Figure 5. Variance (var) and autocorrelation (AC) of ice-area fraction A and ice volume V as a function of CO2 in the model E07 with large
red noise. In each column, the noise term has been introduced to one of three different terms, namely the ocean heat flux (OHF), long-wave
radiative balance (LW), and short-wave radiative balance (SW). Winter sea ice is shown in blue and summer sea ice in red (seasons as in
Fig. 1). The vertical shaded lines indicate the values of CO2 where the annual minimum (red lines) and maximum (blue lines) ice volume
reaches 0.

The evolution of the volume’s autocorrelation (last row in
Fig. 5) closely follows the timescale obtained from the per-
turbation experiment. In principle, this is also true for the
variance of ice volume fluctuations although it does not show
a clear increase after summer ice loss (third row in Fig. 5).
Interestingly, the autocorrelation of ice area (second row in
Fig. 5) does not show the same evolution as the autocorrela-
tion of ice volume in the regime of perennial ice. Such non-
intuitive behaviour can occur as a result of the noise propaga-
tion through the nonlinear system and due to the permanent
changes of feedbacks in different times of the year (Moon
and Wettlaufer, 2013). Ice-area anomalies tend to have a
shorter timescale than volume adjustments, especially due
to the rapid growth of new ice that can quickly produce a
large area increase with only small volume changes. There-
fore, the autocorrelation of ice area is usually smaller than
that of ice volume (it should be noted that the autocorrelation

of the area fraction of winter sea ice has little practical rele-
vance for most CO2 levels because A is always very close to
1, as is reflected by its very small variance). As it is the slow-
est mode that dominates the relaxation time of the full sys-
tem, the autocorrelation of ice volume corresponds well to
the timescales we measured in the perturbation experiments
(Fig. 2).

3.3 Transient stochastic simulations

We now analyse transient simulations with E07 and compare
them to the most comprehensive model, MPI-ESM. We focus
on the evolution of ice volume and its statistics. Each exper-
iment starts from pre-industrial CO2, which is then quadru-
pled over 2000 years. After approx. 1550 years, an abrupt
loss of Arctic winter sea ice occurs in both models. As the
description of the ice-thickness distribution is similar in E07
and MPI-ESM, the abrupt winter sea-ice loss probably re-
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Figure 6. Time series from transient simulations with the box model by Eisenman (2007) (left column) and MPI-ESM (middle and right
column). (a–c) Evolution of ice volume; (d–f) variance; (g–i) autocorrelation of this volume as obtained from a sliding window approach.
Winter sea ice is shown in blue and summer sea ice in red. The single grid cell in MPI-ESM (second column) is located at 86.5◦ N and
102◦W.

sults from the same threshold mechanism (Bathiany et al.,
2016). This is corroborated by the fact that the abrupt loss is
reversible in MPI-ESM (Li et al., 2013).

We use red noise that is added to the ocean heat trans-
port and that has a noise level which produces a similar vari-
ability in ice volume as MPI-ESM at individual grid cells.
To obtain the evolution of variance and autocorrelation of
the ice volume in both models we apply the “early warn-
ings” R package described in Dakos et al. (2012a), which
performs an analysis often applied to transient time series
(Lenton, 2011). The method consists in a running window
of 300 years that slides from the beginning of the time se-
ries to the point just before the ice loss. In the case of sum-
mer sea ice, this final point is reached after 800 years, in the
case of winter ice loss after 1550 years. As in the case of the
stationary simulations, each time series consists of annually
spaced seasonal means. Within the running window, fluctua-
tions on long timescales are removed by smoothing the time
series with a Gaussian kernel of interactive bandwidth and
subtracting this smoothed version from the original time se-
ries. For the residuals, variance and autocorrelation are cal-
culated within the window. As the window moves along the

time series, we obtain an evolution of variance and autocor-
relation (being shorter than the original time series by the
window length).

The results with E07 are similar to the stationary experi-
ments in the previous section (Fig. 6). As the simulations are
much shorter than the stationary experiments, the results are
much noisier. However, the decrease in variance (Fig. 6d–
f) and the decline and subsequent increase in autocorrela-
tion of V (Fig. 6g–i) are still clearly visible. As MPI-ESM
is a spatially explicit model, one has to choose a specific re-
gion. We analysed six different single grid cells in the Arctic
ocean and obtain a qualitatively similar evolution of statis-
tics; Fig. 6b, e, and h show results for a grid cell located at
approx. 102◦W and 86.5◦ N. Figure 6c, f, and i show results
for the total ice volume north of 75◦ N. Thus, the behaviour
at individual grid cells carries over to the regional scale. The
results from MPI-ESM are also in good agreement with the
results from E07 – the inclusion of spatial differences and
processes like advection and mechanical redistribution of sea
ice apparently has not changed the behaviour of sea-ice vari-
ability. We therefore argue that E07 is an appropriate model
to explain the behaviour in MPI-ESM and it is probable that
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(a) (b) (c)

Figure 7. Statistics of Kendall’s tau for standard deviation (SD) and autocorrelation (AC) changes in ensemble simulations with the E07
model. Each figure shows results for MAM time series of sea-ice volume. The number of years refers to the total length of an experiment
until CO2 has quadrupled. (a) Standard deviation trends before summer sea-ice loss; (b) autocorrelation trends before summer sea-ice loss
(perennial ice regime); (c) autocorrelation trends in the period between summer sea-ice loss and winter sea-ice loss (seasonal ice regime).
On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually.

the same processes are behind the evolution of the statistics.
This finding is corroborated by the fact that the abrupt loss of
winter sea ice is also due to the same reason in both models
(Bathiany et al., 2016).

As Fig. 6 only presents a single realisation from both mod-
els the question arises how long a time series needs to be in
order to observe significant trends. We therefore conducted
four different experiments with E07 where the quadrupling
of CO2 occurs over 100, 200, 500, and 2000 years respec-
tively. For each experiment we perform 1000 realisations and
calculate the trends in variance and autocorrelation in each
realisation. These trends are given as Kendall tau values that
express how monotonically a property changes. A time se-
ries with only positive (negative) changes from one point to
the next has a Kendall tau of 1 (−1); a time series with an
equal number of increases and decreases has a Kendall tau
of 0. Figure 7 shows the distribution of Kendall tau values
for the trends in variance and autocorrelation of winter sea
ice. Sea-ice loss occurs at slightly different times in the dif-
ferent realisations. Winter sea-ice loss typically occurs af-
ter four-fifths of the experiment length. In each realisation,
the sliding window in which variance and autocorrelation are
measured therefore stops 5 years before zero ice volume oc-
curs for the first time in September (Fig. 7a, b) or March
(Fig. 7c). Increasing the window length improves the results,
but the window length is of course limited by the length of
the time series. We therefore chose a constant relative win-
dow length of three-twentieth of the experiment length. The
results somewhat depend on the details of this analysis and
the system under consideration. However, Fig. 7 illustrates
that several hundred to thousand years are required to obtain
robust trends. While these results support our interpretation
that the 2000-year experiments in Fig. 6 are meaningful, sim-
ulations with more plausible scenarios cannot be expected to
yield robust results. In general, variance is better constrained
than autocorrelation (Ditlevsen and Johnsen, 2010). There-
fore, one can expect to see a decrease in variance of sea-ice
volume but no consistent changes in autocorrelation in simu-

lations where sea-ice loss occurs within less than 200 years,
a typical experiment length for projections of anthropogenic
climate change.

To test this prediction, we finally analyse CMIP5 simu-
lations from MPI-ESM and eight other comprehensive cli-
mate models. For this analysis we combine the historical sim-
ulation, the RCP8.5 simulation, and the extended RCP8.5
simulation that ends in the year 2300. In this scenario,
atmospheric CO2 shows an accelerated increase until the
year 2100, when a radiative forcing of approx. 8.5 W m−2

is reached. Thereafter, the CO2 concentration stabilises at
almost 2000 ppm (Meinshausen et al., 2011), yielding the
largest warming of all CMIP5 simulations. The extended
simulations until 2300 were performed with nine models
(Hezel et al., 2014). Here we analyse all models where Arc-
tic sea-ice area falls below 1 million km2 in the full RCP8.5
scenario, no matter when this event occurs. Two of the mod-
els analysed in Hezel et al. (2014) do not lose their winter sea
ice by 2300, while two other models not analysed by Hezel et
al. (2014) have lost their winter sea ice already by 2100 (the
nine models we analyse are therefore not identical to the nine
models in Hezel et al., 2014). For the analysis of the CMIP5
simulations we use the same sliding window approach as ex-
plained above, using a window length of 30 years. The results
confirm our findings from above: sea-ice variance decreases
in most models (especially those with a large pre-industrial
variability). The decrease in variance occurs not only in the
whole Arctic but also at individual grid cells and is thus likely
to result from the increasing growth–thickness feedback dis-
cussed in Sect. 3.1. Autocorrelation shows no convincing sig-
nal compared to Fig. 6, which is not surprising given the short
time series (Fig. 8), though a hint of a decrease in autocorre-
lation seems to be visible. As we have shown in the previous
sections, the trends in variance and autocorrelation that occur
in sufficiently long simulations are not specific to the mecha-
nism of ice loss. Figures 7–8 illustrate yet another limitation
to the applicability of early warning signals: even if there was
any information in these trends, it would be impossible to de-
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Figure 8. Evolution of MAM-averaged sea-ice volume (V ) and its variance (var) and autocorrelation (AC) in nine comprehensive climate
models. The time series are the combined historical and RCP8.5 simulation; the window length for the calculation of var and AC is 30 years.
Grid cell 1 is located at approx. 102◦W/86.5◦ N and grid cell 2 at 180◦W/74.5◦ N; the right column shows all volume north of 75◦ N.

tect it in a single realisation with the current rate of global
warming. As we analyse seasonal means with a time step of
1 year from one data point to the next, a higher temporal
resolution may provide an improvement (e.g. Williamson et
al., 2016). This would require one to remove the annual cy-
cle from the time series before the statistical analysis of the
anomalies. However, as the annual cycle changes consider-
ably when sea ice is lost, and as other relevant mechanisms
might come into play on short timescales, we leave this chal-
lenge to future studies.

4 Conclusions

Using a hierarchy of models, we have demonstrated a robust
link between the mean state and the variability of sea ice.
This link concerns all climate states between a perennial ice
cover and a perennial open Arctic Ocean. While the relax-
ation time of Arctic sea ice tends to decrease before sum-
mer ice loss, it increases before winter ice loss in all models.
In time series of sea-ice volume these trends carry over to
autocorrelation and, to some extent, variance. The decreas-

ing response time during summer sea-ice loss is caused by
the more efficient heat conduction through the thinning ice.
The increasing response time during winter sea-ice loss is
mainly caused by the long response time of the ocean which
becomes more influential as the ice retreats. We found that
these results do not depend on whether Arctic sea-ice loss
occurs abruptly or even irreversibly in a model. At first sight,
this may appear to be in conflict with the generic concept of
slowing down. In principle, however, the concept does apply
to the case of sea-ice loss: just before the bifurcation at the
point of winter sea-ice loss occurs in E12 or E07, a sharp
peak emerges (Figs. 2a, 3a). The peaks are more pronounced
when the ice–albedo feedback is important like in E12, where
τ even peaks during summer ice loss, and less pronounced
before the winter ice loss in E07, which is mainly due to a
threshold mechanism.

The practical problem is that these bifurcation-induced
peaks occur in such a narrow parameter regime that it will be
impossible to detect them before an abrupt change in tran-
sient time series. The general trends in transient time series
will therefore be independent of the mechanism or even the
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existence of an abrupt change. In order to infer information
on the system from its variability, these trends would need
to be more specific to certain mechanisms. In models of low
or intermediate complexity, however, it may well be possible
to investigate the mechanism of an abrupt change diagnos-
tically by creating long stationary time series for carefully
selected forcing conditions (Bathiany et al., 2013a, b). It is
therefore useful to see that our results are robust to the source
of the noise, its spectrum, and its magnitude. We have also
shown that long simulations are necessary to obtain robust
results, typically more than 1000 years (also see Ditlevsen
and Johnsen, 2010). This is also the reason why it will be
difficult to see consistent trends in observations. Livina and
Lenton (2013) found a recent increase in autocorrelation for
summer sea-ice area from satellite observations when cor-
rected for the continental distribution, but no other clear sig-
nals due to the rather short record. Similarly, Williamson et
al. (2016) found no change in the phase lag of Arctic sea-ice
area relative to the annual cycle of insolation, indicating no
change in relaxation time. The column models we applied
suggest that ice volume (or thickness in the column models)
captures the system’s relaxation time better than area frac-
tion. Unfortunately, ice thickness and volume are much more
difficult to observe than sea-ice area. We conclude that if sea
ice was approaching a tipping point, observations of sea-ice
variability would not help to predict it.

The comprehensive model we analysed in most detail,
MPI-ESM, likely exaggerates how rapidly the final bit of
winter sea-ice volume disappears (e.g. as seen in the top right
panel of Fig. 8). This abrupt volume loss is probably related
to the ice-growth parameterisation, which attributes a single
thickness to all newly formed ice in a grid cell (Bathiany
et al., 2016). Although the abrupt event itself is not part of
our time series analysis above, it points to potential limita-
tions of the applied model and one may ask how models with
several ice-thickness classes would behave. It is reassuring
in this regard that eight other models agree with MPI-ESM
in their decrease of the sea-ice volume’s variance, although
time series were too short to show clear trends in autocorre-
lation. Moreover, the mechanistic insight obtained with the
simpler models suggests that these model agreements are no
coincidence because they can be explained from fundamental
physical processes. Both the fast adjustment of thin ice and
the slow response of the mixed-layer ocean are represented
in all the models and would also not change in even more
complex models. For example, in models with many ice-
thickness classes, the variability of the total ice volume in a
grid cell is the result of the variability of all thickness classes.
The trends in variance and autocorrelation would have the
same sign for each thickness class because the thickness-
growth relationship is monotonous (Thorndike et al., 1975).
Even the precise realisation of the weather-induced variabil-
ity would be identical because all thickness classes within a
grid cell are coupled to the same ocean and atmosphere grid
cell. Hence, the level of sophistication in the representation

of the subgrid-scale ice-thickness distribution is not relevant
for our results. Furthermore, it has been shown in Bathiany et
al. (2016) that radiative feedbacks and mechanical redistribu-
tion mechanisms are unimportant for the abruptness of sea-
ice loss in MPI-ESM, which is instead determined by ther-
modynamic processes. It is therefore plausible that the same
processes also determine the variability of sea ice before the
final ice loss occurs.

Interestingly, our result that the relaxation time is unre-
lated to the existence of a tipping point has analogies in
many other systems whose effective “mass” changes over
time. For instance, the effective heat capacity of the ocean
increases with the mixed layer depth, which can cause an in-
crease in autocorrelation although the system does not desta-
bilise (Boulton and Lenton, 2015). Moreover, the relaxation
timescale may depend on the direction of perturbations, just
like sea-ice melting and freezing is determined by different
processes. An example for such asymmetry is vegetation dy-
namics (Bathiany et al., 2012): while vegetation can die back
or burn within days or months, its regrowth can take many
decades. Such restrictions and the fact that the statistics of
sea ice in the models are closely linked to its mean state may
make the prospect of “early warnings” for accelerated sea-ice
loss appear rather limited. However, this also provides oppor-
tunities. First, the physical mechanisms behind the phenom-
ena we have described are relevant for paleoclimate problems
such as the role of sea-ice variability in the Eocene (White
et al., 2010) or the transitions into and out of a “Snowball
Earth” state (Pierrehumbert et al., 2011). For example, our
results would allow one to formulate a stochastic parameteri-
sation of sea-ice variability for simple climate models that is
valid in all climates. Second, due to the crucial role of sea ice
in the Arctic climate, an improved understanding of sea-ice
variability will contribute to understand the future evolution
of Arctic climate variability in general (Stouffer and Wether-
ald, 2007; Huntingford et al., 2013). In particular, the strict
relation between the mean state of sea ice and its variability
suggests the possibility to infer the system’s total variability
from relatively short observational time series and to estimate
the typical magnitude and longevity of climate anomalies in
the future. This knowledge will be important for ecosystems
and economical activities in the high-latitude oceans.

5 Data availability

The data from the 2000-year simulation with MPI-
ESM are archived at the DRKZ and available via
chao.li@mpimet.mpg.de and sebastian.bathiany@wur.nl.
The CMIP5 model output can be accessed through the
gateways of the Earth System Grid Federation (ESGF). All
other data can be simulated following the explanations in the
main text and the references therein and can also be obtained
from the main author.

The Cryosphere, 10, 1631–1645, 2016 www.the-cryosphere.net/10/1631/2016/



S. Bathiany et al.: Statistical indicators of Arctic sea-ice stability 1643

Appendix A: Description of Eisenman (2012) model and
feedback suppression method

Here, we describe the model by Eisenman (2012), denoted
E12 in the main text, and the changes made to separate dif-
ferent effects.

The dynamic equation of the model is

dE
dt
= A−BT +FB, (A1)

with t for time and E for enthalpy. In the presence of sea ice,
E is negative and proportional to the ice’s thickness, while
during ice-free conditions, E is positive and proportional to
the mixed-layer temperature.

TermA in Eq. (A1) describes the temperature-independent
terms of the radiative balance

A=

(
1+1α tanh

(
E

hα

))
(1− Sa cos2πt)

−Lm−La cos2π(t −8), (A2)

where Lm is the annual mean long-wave radiation balance at
the surface, the control parameter we vary in our experiments
to represent a change in atmospheric CO2.
T represents the surface temperature of the ice–ocean sys-

tem and is calculated from

T =


E, E ≥ 0 [openocean]
0, E < 0, A > 0 [meltingsurface]
A

B
(1−

ζ

E
)−1, E < 0, A < 0 [frozensurface].

(A3)

These equations correspond to Eqs. (9)–(11) in Eisenman
(2012) with the exception that we have omitted the tilde
above all variables that denotes them as non-dimensional
variables. All parameter values are listed in Table 1 in Eisen-
man (2012). For a derivation of these equations and an expla-
nation of all parameters see Eisenman (2012) and Eisenman
and Wettlaufer (2009).

To switch off the ice–albedo feedback, we set 1α to 0. To
additionally switch off the growth–thickness feedback, the
temperature equation is replaced by

T =

{
E, E ≥ 0 [openocean]
3E, E < 0 [sea ice]. (A4)

This way, the stabilising growth–thickness feedback is re-
placed by the stabilising Planck feedback, that which also
operates under ice-free conditions. The factor 3 in the pres-
ence of sea ice is arbitrary and was introduced merely to dis-
tinguish the regime with and without sea ice in Fig. 2c.

Alternatively, to reduce the heat capacity of the mixed
layer by a factor 2 we exchange the temperature equation
by

T =


2E, E ≥ 0 [openocean]
0, E < 0, A > 0 [meltingsurface]
A

B
(1−

ζ

E
)−1, E < 0, A < 0 [frozensurface].

(A5)

As the equations are dimensionless, the mixed-layer heat ca-
pacity C does not explicitly appear in the model equations.
In the case of open water, E incorporates the inverse of C,
which is why halving C corresponds to doubling E in the
open-water case of the above equation (see Eisenman (2012)
for details on the model derivation).
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