Articles | Volume 10, issue 3
The Cryosphere, 10, 1125–1145, 2016
https://doi.org/10.5194/tc-10-1125-2016
The Cryosphere, 10, 1125–1145, 2016
https://doi.org/10.5194/tc-10-1125-2016

Research article 27 May 2016

Research article | 27 May 2016

Imaging air volume fraction in sea ice using non-destructive X-ray tomography

Odile Crabeck et al.

Related authors

Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm
Nicolas-Xavier Geilfus, Ryan J. Galley, Brent G. T. Else, Karley Campbell, Tim Papakyriakou, Odile Crabeck, Marcos Lemes, Bruno Delille, and Søren Rysgaard
The Cryosphere, 10, 2173–2189, https://doi.org/10.5194/tc-10-2173-2016,https://doi.org/10.5194/tc-10-2173-2016, 2016
Short summary
CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input
O. Crabeck, B. Delille, D. Thomas, N.-X. Geilfus, S. Rysgaard, and J.-L. Tison
Biogeosciences, 11, 6525–6538, https://doi.org/10.5194/bg-11-6525-2014,https://doi.org/10.5194/bg-11-6525-2014, 2014

Related subject area

Sea Ice
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021,https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021,https://doi.org/10.5194/tc-15-821-2021, 2021
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020,https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020,https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020,https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary

Cited articles

Bennington, K. O.: Desalination features in natural sea ice, J. Glaciol., 6, 845–857,1967.
Bock, C. and Eicken, H.: A magnetic resonance study of temperature-dependent microstructural evolution and self-diffusion of water in Arctic first-year sea ice, Ann. Glaciol., 40, 179–184, 2005.
Carte, A. E.: Air bubbles in ice, Proc. Phys. Soc., 77, 757–768, 1961.
Cole, D. M. and Shapiro, L. H.: Observations of brine drainage networks and microstructure of first-year sea ice, J. Geophys. Res., 103, 21739–21750, 1998.
Cole, D. M., Eicken, H., Frey, K., and Shapiro, L. H.: Observations of banding in first-year Arctic sea ice, J. Geophys. Res., 109, C08012, https://doi.org/10.1029/2003JC001993, 2004.
Download
Short summary
We present a new non-destructive X-ray-computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. While the internal layers showed air-volume fractions < 2 %, the ice–air interface (top 2 cm) showed values up to 5 %. As a result of the presence of large bubbles and higher air volume fraction measurements in sea ice, we introduce new perspectives on processes regulating gas exchange at the ice–atmosphere interface.