Articles | Volume 9, issue 6
https://doi.org/10.5194/tc-9-2219-2015
https://doi.org/10.5194/tc-9-2219-2015
Research article
 | 
01 Dec 2015
Research article |  | 01 Dec 2015

Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry

K. E. Allstadt, D. E. Shean, A. Campbell, M. Fahnestock, and S. D. Malone

Related authors

Kinetic fractionation of gases by deep air convection in polar firn
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013,https://doi.org/10.5194/acp-13-11141-2013, 2013

Related subject area

Alpine Glaciers
Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024,https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024,https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024,https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Unprecedented Twenty-First Century Glacier Loss on Mt. Hood, Oregon, U.S.A.
Nicolas Bakken-French, Stephen J. Boyer, W. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
EGUsphere, https://doi.org/10.5194/egusphere-2024-251,https://doi.org/10.5194/egusphere-2024-251, 2024
Short summary
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023,https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary

Cited articles

Allstadt, K. and Malone, S. D.: Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano, J. Geophys. Res.-Earth, 119, 1180–1203, https://doi.org/10.1002/2014JF003086, 2014.
Anderson, R. S., Anderson, S. P., MacGregor, K. R., Waddington, E. D., O'Neel, S., Riihimaki, C. A., and Loso, M. G.: Strong feedbacks between hydrology and sliding of a small alpine glacier, J. Geophys. Res.-Earth, 109, F03005, https://doi.org/10.1029/2004JF000120, 2014.
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Response of glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37, https://doi.org/10.1038/ngeo.2007.52, 2007.
Burgmann, R., Rosen, P. A., and Fielding, E. J.: Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation, Annu. Rev. Earth Pl. Sc., 28, 169–209, https://doi.org/10.1146/annurev.earth.28.1.169, 2000.
Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A.: A review of terrestrial radar interferometry for measuring surface change in the geosciences, Earth Surf. Proc. Land., https://doi.org/10.1002/esp.3656, online first, 2014.
Download
Short summary
Terrestrial radar interferometry measurements allow us to capture the entire velocity field of several alpine glaciers at Mount Rainier, WA, and investigate glacier dynamics. We analyze spatial patterns and compare repeat measurements to investigate diurnal and seasonal glacier changes. We find no significant diurnal variability but a very large seasonal slowdown (25 to 50%) from July to November likely due to changes in subglacial water storage. Modeling suggests 91-99% of motion is sliding.