Articles | Volume 9, issue 6
https://doi.org/10.5194/tc-9-2135-2015
https://doi.org/10.5194/tc-9-2135-2015
Research article
 | 
18 Nov 2015
Research article |  | 18 Nov 2015

From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA)

R. J. Braithwaite

Related subject area

Alpine Glaciers
Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024,https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024,https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024,https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Unprecedented Twenty-First Century Glacier Loss on Mt. Hood, Oregon, U.S.A.
Nicolas Bakken-French, Stephen J. Boyer, W. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
EGUsphere, https://doi.org/10.5194/egusphere-2024-251,https://doi.org/10.5194/egusphere-2024-251, 2024
Short summary
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023,https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary

Cited articles

Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Anonymous: Mass-balance terms, J. Glaciol., 52, 3–7, 1969.
Armstrong, T., Robert, B., and Swithinbank, C.: Illustrated glossary of snow and ice (2nd ed.), Scott Polar Research Institute, Cambridge, 60 pp., 1973.
Baird, P. D.: The glaciological studies of the Baffin Island Expedition, 1950. Part 1, Methods of nourishment of the Barnes Ice Cap, J. Glaciol., 2, 17–19, 1952.
Bakke, J. and Nesje, A.: Equilibrium-Line Altitude (ELA), in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V., Singh, P., and Haritashya, U., Springer, the Netherlands, 268–277, 2011.
Download
Short summary
Kurowski suggested in 1891 that ELA is equal to the mean altitude of the glacier when the glacier is in balance. I compare mean altitude with balanced-budget ELA for 103 modern glaciers. Kurowski’s mean altitude is significantly higher (at 95% level) than balanced-budget ELA for 19 outlet and 42 valley glaciers, but not significantly higher for 34 mountain glaciers. The error in Kurowski mean altitude as a predictor of balanced budget might be due to non-linearity in balance gradients.