Articles | Volume 7, issue 5
https://doi.org/10.5194/tc-7-1499-2013
https://doi.org/10.5194/tc-7-1499-2013
Research article
 | Highlight paper
 | 
25 Sep 2013
Research article | Highlight paper |  | 25 Sep 2013

Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates

I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann

Related authors

A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024,https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024,https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Feedback mechanisms controlling Antarctic glacial cycle dynamics simulated with a coupled ice sheet–solid Earth model
Torsten Albrecht, Meike Bagge, and Volker Klemann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2990,https://doi.org/10.5194/egusphere-2023-2990, 2023
Short summary
Evolution of Antarctic firn air content under three future warming scenarios
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2023-2237,https://doi.org/10.5194/egusphere-2023-2237, 2023
Short summary
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-140,https://doi.org/10.5194/tc-2023-140, 2023
Preprint under review for TC
Short summary

Related subject area

Antarctic
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024,https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024,https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024,https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024,https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024,https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary

Cited articles

Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., and Valentine, V. B.: Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level, Science, 297, 382–386, https://doi.org/10.1126/science.1072497, 2002.
Barletta, V. R., Sabadini, R., and Bordoni, A.: Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland, Geophys. J. Int., 172, 18–30, https://doi.org/10.1111/j.1365-246X.2007.03630.x, 2008.
Barletta, V. R., Sørensen, L. S., and Forsberg, R.: Variability of mass changes at basin scale for Greenland and Antarctica, The Cryosphere Discuss., 6, 3397–3446, https://doi.org/10.5194/tcd-6-3397-2012, 2012.
Bassett, S., Milne, G., Bentley, M., and P. Huybrechts, P.: Modelling Antarctic Sea-Level Observations to Test the Hypothesis of a Dominant Antarctic Contribution to Meltwater Pulse IA, Quaternary Sci. Rev., 26, 2113–2127, 2007.
Bettadpur, S.: CSR Level-2 Processing Standards} Document for Level-2 Product Release 04, Univ. Texas, Austin, Rev. 3.1, GRACE 327–742 ({CSR-GR-03-03), 2007.