Articles | Volume 6, issue 3
https://doi.org/10.5194/tc-6-687-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-6-687-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Brief communication "Can recent ice discharges following the Larsen-B ice-shelf collapse be used to infer the driving mechanisms of millennial-scale variations of the Laurentide ice sheet?"
J. Alvarez-Solas
Campus de Exelencia Internacional (CEI), Instituto de Geociencias (IGEO), CSIS-UCM, Spain
Dpto. Astrofísica y Ciencias de la Atmósfera, Universidad Complutense, Madrid, Spain
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR8212, France
A. Robinson
Campus de Exelencia Internacional (CEI), Instituto de Geociencias (IGEO), CSIS-UCM, Spain
Dpto. Astrofísica y Ciencias de la Atmósfera, Universidad Complutense, Madrid, Spain
C. Ritz
Laboratoire de Glaciologie et Géophysique de l'Environnement, UJF-Grenoble 1 – CNRS, LGGE, UMR5183, Grenoble, 38041, France
Related subject area
Paleo-Glaciology (including Former Ice Reconstructions)
Millennial-scale fluctuations of palaeo-ice margin at the southern fringe of the last Fennoscandian Ice Sheet
Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
The influence of glacial landscape evolution on Scandinavian ice-sheet dynamics and dimensions
Antarctic permafrost processes and antiphase dynamics of cold-based glaciers in the McMurdo Dry Valleys inferred from 10Be and 26Al cosmogenic nuclides
Late Holocene glacier and climate fluctuations in the Mackenzie and Selwyn mountain ranges, northwestern Canada
Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene
The collapse of the Cordilleran–Laurentide ice saddle and early opening of the Mackenzie Valley, Northwest Territories, Canada, constrained by 10Be exposure dating
Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea
Understanding drivers of glacier-length variability over the last millennium
Central Himalayan tree-ring isotopes reveal increasing regional heterogeneity and enhancement in ice mass loss since the 1960s
A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin, Canada
Repeated ice streaming on the northwest Greenland continental shelf since the onset of the Middle Pleistocene Transition
Past ice sheet–seabed interactions in the northeastern Weddell Sea embayment, Antarctica
Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing
Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing
The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM)
Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland
Modelling last glacial cycle ice dynamics in the Alps
Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
Persistent tracers of historic ice flow in glacial stratigraphy near Kamb Ice Stream, West Antarctica
West Antarctic sites for subglacial drilling to test for past ice-sheet collapse
Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf
Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica
A glacial systems model configured for large ensemble analysis of Antarctic deglaciation
Karol Tylmann, Wojciech Wysota, Vincent Rinterknecht, Piotr Moska, Aleksandra Bielicka-Giełdoń, and ASTER Team
The Cryosphere, 18, 1889–1909, https://doi.org/10.5194/tc-18-1889-2024, https://doi.org/10.5194/tc-18-1889-2024, 2024
Short summary
Short summary
Our results indicate millennial-scale oscillations of the last Fennoscandian Ice Sheet (FIS) in northern Poland between ~19000 and ~17000 years ago. Combined luminescence (OSL) and 10Be dating show the last FIS left basal tills of three ice re-advances at a millennial-scale cycle: 19.2 ± 1.1 ka, 17.8 ± 0.5 ka and 16.9 ± 0.5 ka. This is the first terrestrial record of millennial-scale palaeo-ice margin oscillations at the southern fringe of the FIS during the last glacial cycle.
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024, https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Short summary
The age of the surface blue ice in the Grove Mountains area is dated to be about 140 000 years, and one meteorite found here is 260 000 years old. It is inferred that the Grove Mountains blue-ice area holds considerable potential for paleoclimate studies.
Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen
The Cryosphere, 18, 1517–1532, https://doi.org/10.5194/tc-18-1517-2024, https://doi.org/10.5194/tc-18-1517-2024, 2024
Short summary
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Adam C. Hawkins, Brian Menounos, Brent M. Goehring, Gerald Osborn, Ben M. Pelto, Christopher M. Darvill, and Joerg M. Schaefer
The Cryosphere, 17, 4381–4397, https://doi.org/10.5194/tc-17-4381-2023, https://doi.org/10.5194/tc-17-4381-2023, 2023
Short summary
Short summary
Our study developed a record of glacier and climate change in the Mackenzie and Selwyn mountains of northwestern Canada over the past several hundred years. We estimate temperature change in this region using several methods and incorporate our glacier record with models of climate change to estimate how glacier volume in our study area has changed over time. Models of future glacier change show that our study area will become largely ice-free by the end of the 21st century.
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023, https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary
Short summary
We have reconstructed the Laurentide Ice Sheet, located in North America during the Last Glacial Maximum (21 000 years ago). The absence of direct measurements raises a number of uncertainties. Here we study the impact of different physical laws that describe the friction as the ice slides over its base. We found that the Laurentide Ice Sheet is closest to prior reconstructions when the basal friction takes into account whether the base is frozen or thawed during its motion.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Benjamin J. Stoker, Martin Margold, John C. Gosse, Alan J. Hidy, Alistair J. Monteath, Joseph M. Young, Niall Gandy, Lauren J. Gregoire, Sophie L. Norris, and Duane Froese
The Cryosphere, 16, 4865–4886, https://doi.org/10.5194/tc-16-4865-2022, https://doi.org/10.5194/tc-16-4865-2022, 2022
Short summary
Short summary
The Laurentide Ice Sheet was the largest ice sheet to grow and disappear in the Northern Hemisphere during the last glaciation. In northwestern Canada, it covered the Mackenzie Valley, blocking the migration of fauna and early humans between North America and Beringia and altering the drainage systems. We reconstruct the timing of ice sheet retreat in this region and the implications for the migration of early humans into North America, the drainage of glacial lakes, and past sea level rise.
Weilin Yang, Yingkui Li, Gengnian Liu, and Wenchao Chu
The Cryosphere, 16, 3739–3752, https://doi.org/10.5194/tc-16-3739-2022, https://doi.org/10.5194/tc-16-3739-2022, 2022
Short summary
Short summary
We simulated the glacier evolutions in Bhutanese Himalaya during the LIA using OGGM. At the regional scale, four compelling glacial substages were reported, and a positive correlation between the number of glacial substages and the glacier slope was found. Based on the surface mass balance analysis, the study also indicated that the regional glacier advances are dominated by the reduction of summer ablation.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021, https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Andrew M. W. Newton, Mads Huuse, Paul C. Knutz, and David R. Cox
The Cryosphere, 14, 2303–2312, https://doi.org/10.5194/tc-14-2303-2020, https://doi.org/10.5194/tc-14-2303-2020, 2020
Short summary
Short summary
Seismic reflection data offshore northwest Greenland reveal buried landforms that have been interpreted as mega-scale glacial lineations (MSGLs). These have been formed by ancient ice streams that advanced hundreds of kilometres across the continental shelf. The stratigraphy and available chronology show that the MSGLs are confined to separate stratigraphic units and were most likely formed during several glacial maxima after the onset of the Middle Pleistocene Transition at ~ 1.3 Ma.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Michelle Tigchelaar, Axel Timmermann, Tobias Friedrich, Malte Heinemann, and David Pollard
The Cryosphere, 13, 2615–2631, https://doi.org/10.5194/tc-13-2615-2019, https://doi.org/10.5194/tc-13-2615-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet has expanded and retracted often in the past, but, so far, studies have not identified which environmental driver is most important: air temperature, snowfall, ocean conditions or global sea level. In a modeling study of 400 000 years of Antarctic Ice Sheet variability we isolated different drivers and found that no single driver dominates. Air temperature and sea level are most important and combine in a synergistic way, with important implications for future change.
Andreas Plach, Kerim H. Nisancioglu, Petra M. Langebroek, Andreas Born, and Sébastien Le clec'h
The Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019, https://doi.org/10.5194/tc-13-2133-2019, 2019
Short summary
Short summary
Meltwater from the Greenland ice sheet (GrIS) rises sea level and knowing how the GrIS behaved in the past will help to become better in predicting its future. Here, the evolution of the past GrIS is shown to be dominated by how much ice melts (a result of the prevailing climate) rather than how ice flow is represented in the simulations. Therefore, it is very important to know past climates accurately, in order to be able to simulate the evolution of the GrIS and its contribution to sea level.
Joshua K. Cuzzone, Nicole-Jeanne Schlegel, Mathieu Morlighem, Eric Larour, Jason P. Briner, Helene Seroussi, and Lambert Caron
The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, https://doi.org/10.5194/tc-13-879-2019, 2019
Short summary
Short summary
We present ice sheet modeling results of ice retreat over southwestern Greenland during the last 12 000 years, and we also test the impact that model horizontal resolution has on differences in the simulated spatial retreat and its associated rate. Results indicate that model resolution plays a minor role in simulated retreat in areas where bed topography is not complex but plays an important role in areas where bed topography is complex (such as fjords).
Niall Gandy, Lauren J. Gregoire, Jeremy C. Ely, Christopher D. Clark, David M. Hodgson, Victoria Lee, Tom Bradwell, and Ruza F. Ivanovic
The Cryosphere, 12, 3635–3651, https://doi.org/10.5194/tc-12-3635-2018, https://doi.org/10.5194/tc-12-3635-2018, 2018
Short summary
Short summary
We use the deglaciation of the last British–Irish Ice Sheet as a valuable case to examine the processes of contemporary ice sheet change, using an ice sheet model to simulate the Minch Ice Stream. We find that ice shelves were a control on retreat and that the Minch Ice Stream was vulnerable to the same marine mechanisms which threaten the future of the West Antarctic Ice Sheet. This demonstrates the importance of marine processes when projecting the future of our contemporary ice sheets.
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
Johannes Oerlemans
The Cryosphere, 12, 3001–3015, https://doi.org/10.5194/tc-12-3001-2018, https://doi.org/10.5194/tc-12-3001-2018, 2018
Short summary
Short summary
Monacobreen is a 40 km long surge-type tidewater glacier in northern Spitsbergen. The front is retreating fast. Calculations with a glacier model predict that due to future climate warming this glacier will have lost 20 to 40 % of its volume by the year 2100. Because of the glacier's memory, much of the response will come after 2100, even if the climatic conditions would stabilize.
Nicholas Holschuh, Knut Christianson, Howard Conway, Robert W. Jacobel, and Brian C. Welch
The Cryosphere, 12, 2821–2829, https://doi.org/10.5194/tc-12-2821-2018, https://doi.org/10.5194/tc-12-2821-2018, 2018
Short summary
Short summary
Models of the Antarctic Sheet are tuned using observations of historic ice-sheet behavior, but we have few observations that tell us how inland ice behaved over the last few millennia. A 2 km tall volcano sitting under the ice sheet has left a record in the ice as it flows by, and that feature provides unique insight into the regional ice-flow history. It indicates that observed, rapid changes in West Antarctica flow dynamics have not affected the continental interior over the last 5700 years.
Perry Spector, John Stone, David Pollard, Trevor Hillebrand, Cameron Lewis, and Joel Gombiner
The Cryosphere, 12, 2741–2757, https://doi.org/10.5194/tc-12-2741-2018, https://doi.org/10.5194/tc-12-2741-2018, 2018
Short summary
Short summary
Cosmogenic-nuclide analyses in bedrock recovered from below the West Antarctic Ice Sheet have the potential to establish whether and when large-scale deglaciation occurred in the past. Here we (i) discuss the criteria and considerations for subglacial drill sites, (ii) evaluate candidate sites in West Antarctica, and (iii) describe reconnaissance at three West Antarctic sites, focusing on the Pirrit Hills, which we present as a case study of site selection on the scale of an individual nunatak.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Anna Ruth W. Halberstadt, Lauren M. Simkins, Sarah L. Greenwood, and John B. Anderson
The Cryosphere, 10, 1003–1020, https://doi.org/10.5194/tc-10-1003-2016, https://doi.org/10.5194/tc-10-1003-2016, 2016
Short summary
Short summary
Geomorphic features on the Ross Sea sea floor provide a record of ice-sheet behaviour during the Last Glacial Maximum and subsequent retreat. Based on extensive mapping of these glacial landforms, a large embayment formed in the eastern Ross Sea. This was followed by complex, late-stage retreat in the western Ross Sea where banks stabilised the ice sheet. Physiography and sea floor geology act as regional controls on ice-sheet dynamics across the Ross Sea.
R. Briggs, D. Pollard, and L. Tarasov
The Cryosphere, 7, 1949–1970, https://doi.org/10.5194/tc-7-1949-2013, https://doi.org/10.5194/tc-7-1949-2013, 2013
Cited articles
Aksu, A. and Mudie, P.: Late Quaternary stratigraphy and paleoecology of northwest Labrador Sea, Mar. Micropaleont., 9, 537–557, 1985.
Alley, R. and Whillans, I.: Changes in the West Antarctic ice sheet, Science, 254, 959–963, https://doi.org/10.1126/science.254.5034.959, 1991.
Alley, R., Andrews, J., Barber, D., and Clark, P.: Comment on "Catastrophic ice shelf breakup as the source of Heinrich event iceberg" by CL Hulbe et al, Paleoceanography, 20, PA1009, https://doi.org/10.1029/2004PA001086, 2005.
Alvarez-Solas, J., Charbit, S., Ramstein, G., Paillard, D., Dumas, C., Ritz, C., and Roche, D.: Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO2 increase, Global Planet. Change, 76, 128–136, https://doi.org/10.1016/j.gloplacha.2010.12.004, 2010{a}.
Alvarez-Solas, J., Charbit, S., Ritz, C., Paillard, D., Ramstein, G., and Dumas, C.: Links between ocean temperature and iceberg discharge during Heinrich events, Nat. Geosci., 3, 122–126, 2010{b}.
\'Alvarez-Solas, J., Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu, K., Dokken, T., and Ganopolski, A.: Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes, Clim. Past, 7, 1297–1306, https://doi.org/10.5194/cp-7-1297-2011, 2011.
Andrews, J.: Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments: a history and review of data and concepts, J. Quaternary Sci., 13, 3–16, 1998.
Andrews, J.: Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: facts and assumptions, Oceanography-Washington DC-Oceanography Society, 13, 100–108, 2000.
Arbic, B., MacAyeal, D., Mitrovica, J., and Milne, G.: PalaeoclimateOcean tides and Heinrich events, Nature, 432, p. 460, 2004.
Arz, H., Lamy, F., Ganopolski, A., Nowaczyk, N., and P{ä}tzold, J.: Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability, Quaternary Sci. Rev., 26, 312–321, 2007.
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S.: Evidence for massive discharge of icebergs into the North {Atlantic} Ocean during the last glacial, Nature, 360, 245–249, 1992.
Brady, E. and Otto-Bliesner, B.: The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations, Clim. Dynam., 37, 1517–1532, 2011.
Bueler, E. and Brown, J.: Shallow shelf approximation as a "sliding law" in a thermomechanically coupled ice sheet model, J. Geophys. Res, 114, F03008, https://doi.org/10.1029/2008JF001179, 2009.
Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model, Geophys. Res. Lett., 29, 69–79, https://doi.org/10.1029/2002GL016078, 2002.
Chough, S., Hesse, R., and M{ü}ller, J.: The Northwest Atlantic Mid-Ocean Channel of the Labrador Sea, IV. Petrography and provenance of the sediments, Canadian J. Earth Sci., 24, 731–740, 1987.
Clark, P. and Pisias, N.: Interpreting iceberg deposits in the deep sea, Science, 290, 51–52, https://doi.org/10.1126/science.290.5489.51c, 2000.
Clark, P., Hostetler, S., Pisias, N., Schmittner, A., and Meissner, K.: Mechanisms for an 7-kyr Climate and Sea-Level Oscillation During Marine Isotope Stage 3, Geophys. Monogr. AGU, 173, 209–246, 2007.
Cook, A., Fox, A., Vaughan, D., and Ferrigno, J.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005.
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gunde- strup, N., Hammer, C., Hvidberg, C., Steffensen, J., Sveinbjorns- dottir, A., Jouzel, J., and Bond, G: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Fl{ü}ckiger, J., Knutti, R., and White, J.: Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events, Paleoceanography, 21, PA2014, https://doi.org/10.1029/2005PA001204, 2006.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quaternary Res., 29, 142–152, 1988.
Hemming, S. R.: Heinrich events: Massive late {P}leistocene detritus layers of the {N}orth {A}tlantic and their global climate imprint, Rev. Geophys, 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Hodell, D., Evans, H., Channell, J., and Curtis, J.: Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period, Quaternary Sci. Rev., 29, 3875–3886, 2010.
Hughes, T.: West Antarctic ice streams, Rev. Geophys., 15, 1–46, 1977.
Hulbe, C., MacAyeal, D., Denton, G., Kleman, J., and Lowell, T.: Catastrophic ice shelf breakup as the source of Heinrich event icebergs, Paleoceanography, 19, PA1004, https://doi.org/10.1029/2003PA000890, 2004.
Hulbe, C., Scambos, T., Youngberg, T., and Lamb, A.: Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula, Global Planet. Change, 63, 1–8, 2008.
Hutter, K.: Theoretical glaciology: material science of ice and the mechanics of glaciers and ice sheets, Springer, 1983.
Jacobs, S., Jenkins, A., Giulivi, C., and Dutrieux, P.: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4, 519–523, 2011.
Jonkers, L., Moros, M., Prins, M., Dokken, T., Dahl, C., Dijkstra, N., Perner, K., and Brummer, G.: A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events, Quaternary Sci. Rev., 29, 1791e1800, https://doi.org/10.1016/j.quascirev.2010.03.014, 2010.
Kanfoush, S., Hodell, D., Charles, C., Guilderson, T., Mortyn, P., and Ninnemann, U.: Millennial-scale instability of the Antarctic ice sheet during the last glaciation, Science, 288, 1815–1819, 2000.
Levermann, A., Albrecht, T., Winkelmann, R., Martin, M. A., Haseloff, M., and Joughin, I.: Kinematic first-order calving law implies potential for abrupt ice-shelf retreat, The Cryosphere, 6, 273–286, https://doi.org/10.5194/tc-6-273-2012, 2012.
MacAyeal, D.: Large-scale ice flow over a viscous basal sediment- Theory and application to ice stream B, Antarctica, J. Geophys. Res., 94, 4071–4087, 1989.
MacAyeal, D.: Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events, Paleoceanography, 8, 775–784, 1993.
Marcott, S., Clark, P., Padman, L., Klinkhammer, G., Springer, S., Liu, Z., Otto-Bliesner, B., Carlson, A., Ungerer, A., Padman, J., He, F., Cheng, J., and Schmittner, A.: Ice-shelf collapse from subsurface warming as a trigger for Heinrich events, Proc. Nat. Aca. Sci., 108, 13415–13419, 2011.
Mignot, J., Ganopolski, A., and Levermann, A.: Atlantic subsurface temperatures: response to a shut-down of the overturning circulation and consequences for its recovery, J. Climate, 20, 4884–4898, 2007.
Montoya, M. and Levermann, A.: Surface wind-stress threshold for glacial Atlantic overturning, Geophys. Res. Lett., 35, L03608, https://doi.org/10.1029/2007GL032560, 2008.
Montoya, M., Griesel, A., Levermann, A., Mignot, J., Hofmann, M., Ganopolski, A., and Rahmstorf, S.: The Earth System Model of Intermediate Complexity CLIM{\it BER}-3α, {Part I}: description and performance for present day conditions, Clim. Dynam., 25, 237–263, 2005.
Morland, L.: Thermomechanical balances of ice sheet flows, Geophys. Astrophys. Fluid Dynam., 29, 237–266, 1984.
Nick, F., Vieli, A., Howat, I., and Joughin, I.: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2, 110–114, 2009.
Payne, A., Vieli, A., Shepherd, A., Wingham, D., and Rignot, E.: Recent dramatic thinning of largest West-Antarctic ice stream triggered by oceans., Geophys. Res. Lett., 31, L23401, https://doi.org/10.1029/2004GL021284, 2004.
Peyaud, V., Ritz, C., and Krinner, G.: Modelling the Early Weichselian Eurasian Ice Sheets: role of ice shelves and influence of ice-dammed lakes, Clim. Past, 3, 375–386, https://doi.org/10.5194/cp-3-375-2007, 2007.
Philippon, G., Ramstein, G., Charbit, S., Kageyama, M., Ritz, C., and Dumas, C.: Evolution of the Antarctic ice sheet throughout the last deglaciation: A study with a new coupled climate–north and south hemisphere ice sheet model, Earth Planet. Sci. Lett., 248, 750–758, 2006.
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, The Cryosphere Discuss., 6, 1405–1444, https://doi.org/10.5194/tcd-6-1405-2012, 2012.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf, Geophys. Res. Lett, 31, L18401, https://doi.org/10.1029/2004GL020697, 2004.
Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region, J. Geophys. Res.-Atmos., 106, 31943–31964, 2001.
Ritz, C., Navas, G., R{é}my, F., Ma, Y., Durand, G., and Sacchettini, M.: Calibration and spinup of an ice sheet model: application to the Antarctic ice sheet, Geophys. Res. Abstr., EGU General Assembly 2010, EGU2010-11819, Vienna, Austria, 2010.
Roche, D., Paillard, D., and Cortijo, E.: Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling, Nature, 432, 379–382, 2004.
Rott, H., Müller, F., Nagler, T., and Floricioiu, D.: The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula, The Cryosphere, 5, 125–134, https://doi.org/10.5194/tc-5-125-2011, 2011.
Scambos, T., Bohlander, J., Shuman, C., and Skvarca, P.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett, 31, L18402, https://doi.org/10.1029/2004GL020670, 2004.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res, 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Shaffer, G., Olsen, S., and Bjerrum, C.: Ocean subsurface warming as a mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting events, Geophys. Res. Lett, 31, https://doi.org/10.1029/2004GL020968, 2004.
Stokes, C. and Tarasov, L.: Ice streaming in the Laurentide Ice Sheet: A first comparison between data-calibrated numerical model output and geological evidence, Geophys. Res. Lett., 37, L01501, https://doi.org/10.1029/2009GL040990, 2010.
Tarasov, L., Dyke, A., Neal, R., and Peltier, W.: A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling, Earth Planet. Sci. Lett., https://doi.org/10.1016/j.epsl.2011.09.010, 2011.
Thomas, R.: The dynamics of marine ice sheets, J. Glaciol., 24, 167–177, 1979.
Vaughan, D.: Implications of the break-up of Wordie Ice Shelf, Antarctica for sea level, Antarctic Sci., 5, 403–408, 1993.
Vaughan, D., Marshall, G., Connolley, W., Parkinson, C., Mulvaney, R., Hodgson, D., King, J., Pudsey, C., and Turner, J.: Recent rapid regional climate warming on the Antarctic Peninsula, Climatic Change, 60, 243–274, 2003.
Winsborrow, M., Clark, C., and Stokes, C.: Ice streams of the Laurentide ice sheet, G{é}ographie Physique et Quaternaire, 58, 269–280, 2004.