Articles | Volume 19, issue 9
https://doi.org/10.5194/tc-19-3749-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-3749-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Greenland Ice Sheet Large Ensemble (GrISLENS): simulating the future of Greenland under climate variability
Vincent Verjans
Barcelona Supercomputing Center, Barcelona, Spain
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Lizz Ultee
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Helene Seroussi
Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
Andrew F. Thompson
Environmental Science & Engineering, California Institute of Technology, Pasadena, CA, USA
Lars Ackermann
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Youngmin Choi
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Uta Krebs-Kanzow
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Related authors
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024, https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Short summary
The average size of many glaciers and ice sheets changes when noise is added to the system. The reasons for this drift in glacier state is intrinsic to the dynamics of how ice flows and the bumpiness of the Earth's surface. We argue that not including noise in projections of ice sheet evolution over coming decades and centuries is a pervasive source of bias in these computer models, and so realistic variability in glacier and climate processes must be included in models.
Lizz Ultee, Finn Wimberly, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2025-3965, https://doi.org/10.5194/egusphere-2025-3965, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Runoff from glaciers can be an important water source in mountain regions. Global climate models used to understand future changes in the water cycle do not include glacier changes. We simulated glacier change in all available glacier models using information from global climate models as input. We found that for analysis of future drought, it is more important to understand the climate input than to use all available glacier models together.
Rigoberto Moncada, Mukund Gupta, Jacinto Ulloa, Andrew F. Thompson, and Jose E. Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2025-3940, https://doi.org/10.5194/egusphere-2025-3940, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how ocean currents break up fast sea ice at their edges using discrete element simulations of bonded floes. We found that swirling eddies can crack ice into realistic patterns and fragment size distributions. Larger eddies penetrate deeper and break more ice than smaller scale eddies. However, larger eddies require faster speeds to induce breakage compared to smaller eddies. This research uses computer models to better understand and predict how sea ice breaks due to ocean movements.
Madeline S. Mamer, Alexander A. Robel, Chris C. K. Lai, Earle Wilson, and Peter Washam
The Cryosphere, 19, 3227–3251, https://doi.org/10.5194/tc-19-3227-2025, https://doi.org/10.5194/tc-19-3227-2025, 2025
Short summary
Short summary
In this work, we simulate estuary-like seawater intrusions into the subglacial hydrologic system for marine outlet glaciers. We find the largest controls on seawater intrusion are the subglacial space geometry and meltwater discharge velocity. Further, we highlight the importance of extending ocean-forced ice loss to grounded portions of the ice sheet, which is currently not represented in models coupling ice sheets to ocean dynamics.
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
The Cryosphere, 19, 2935–2948, https://doi.org/10.5194/tc-19-2935-2025, https://doi.org/10.5194/tc-19-2935-2025, 2025
Short summary
Short summary
We predicted how sea level changed in the Ross Sea (Antarctica) due to glacial isostatic adjustment, or solid Earth ice sheet interactions, over the last deglaciation (20 000 years ago to present) and calculated how these changes in bathymetry impacted ice stream stability. Glacial isostatic adjustment shifts stability from where ice reached its maximum 20 000 years ago, at the continental shelf edge, to the modern grounding line today, reinforcing ice-age climate endmembers.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and be useful for GIS ice sheet modeling.
Fernanda DI Alzira Oliveira Matos, Dmitry Sidorenko, Xiaoxu Shi, Lars Ackermann, Janini Pereira, Gerrit Lohmann, and Christian Stepanek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2326, https://doi.org/10.5194/egusphere-2025-2326, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is responsible for about 25 % of the poleward ocean heat transport. Currently, the AMOC strength is mostly calculated in depth space (z-AMOC). However, we argue that, in warmer climates, the AMOC should be calculated in density space (ρ-AMOC). We performed simulations with CO2 forcing of 280 ppmv (PI) and 1120 ppmv of (4xCO2) and find that ρ-AMOC provides more physical and meaningful information about the AMOC in warmer climates.
Paul T. Summers, Rebecca H. Jackson, and Alexander A. Robel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1555, https://doi.org/10.5194/egusphere-2025-1555, 2025
Short summary
Short summary
We develop a method that allows numerical ocean models to include drag from icebergs, even for icebergs smaller than the model grid scale. This builds upon previous models that have either neglected iceberg drag, or required higher resolution to model individual icebergs. We test our model against higher resolution models, as well as models without iceberg drag, and show that including drag from icebergs is important for capturing realistic ocean circulation, temperature, and ice melt rates.
Ziad Rashed, Alexander A. Robel, and Hélène Seroussi
The Cryosphere, 19, 1775–1788, https://doi.org/10.5194/tc-19-1775-2025, https://doi.org/10.5194/tc-19-1775-2025, 2025
Short summary
Short summary
Sermeq Kujalleq, Greenland's largest glacier, has significantly retreated since the late 1990s in response to warming ocean temperatures. Using a large-ensemble approach, our simulations show that the retreat is mainly initiated by the arrival of warm water but sustained and accelerated by the glacier's position over deeper bed troughs and vigorous calving. We highlight the need for models of ice mélange to project glacier behavior under rapid calving regimes.
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
The Cryosphere, 19, 1599–1619, https://doi.org/10.5194/tc-19-1599-2025, https://doi.org/10.5194/tc-19-1599-2025, 2025
Short summary
Short summary
The rate of ice loss from ice sheets is controlled by the flow of ice from the center of the ice sheet and by the internal fracturing of the ice. These processes are coupled; fractures reduce the viscosity of ice and enable more rapid flow, and rapid flow causes the fracturing of ice. We present a simplified way of representing damage that is applicable to long-timescale flow estimates. Using this model, we find that including fracturing in an ice sheet simulation can increase the loss of ice by 13–29 %.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025, https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 30 km2 of initial glacier cover.
Peter Van Katwyk, Baylor Fox-Kemper, Sophie Nowicki, Hélène Seroussi, and Karianne J. Bergen
EGUsphere, https://doi.org/10.5194/egusphere-2025-870, https://doi.org/10.5194/egusphere-2025-870, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present ISEFlow, a machine learning emulator that predicts how the melting of the Antarctic and Greenland ice sheets will contribute to sea level. ISEFlow is fast and accurate, allowing scientists to explore different climate scenarios with greater confidence. ISEFlow distinguishes between high and low emissions scenarios, helping us understand how today’s choices impact future sea levels. ISEFlow supports more reliable climate predictions and helps scientists study the future of ice sheets.
Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-301, https://doi.org/10.5194/egusphere-2025-301, 2025
Short summary
Short summary
In this study, we combined numerical models with satellite data using the ensemble Kalman filter to improve predictions of glacier states and their basal conditions. Simulations showed that adding more data enhances prediction accuracy. We also tested the effect of various data types and found that the high-resolution data improve model performance. This method could inform the design of better observation systems and refine future projections of ice sheet behavior.
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari, and Lauren J. Gregoire
The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025, https://doi.org/10.5194/tc-19-541-2025, 2025
Short summary
Short summary
We use an ice sheet model to simulate the Antarctic contribution to sea level over the 21st century under a range of future climates and varying how sensitive the ice sheet is to different processes. We find that ocean temperatures increase and more snow falls on the ice sheet under stronger warming scenarios. When the ice sheet is sensitive to ocean warming, ocean melt-driven loss exceeds snowfall-driven gains, meaning that the sea level contribution is greater with more climate warming.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136, https://doi.org/10.5194/egusphere-2024-4136, 2025
Short summary
Short summary
We studied how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our work highlights resolution requirements for similar ice—earth models, and the importance of bedrock mapping efforts in Antarctica.
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
The Cryosphere, 19, 19–35, https://doi.org/10.5194/tc-19-19-2025, https://doi.org/10.5194/tc-19-19-2025, 2025
Short summary
Short summary
Some fjords contain dense packs of icebergs referred to as ice mélange. Ice mélange can affect the stability of marine-terminating glaciers by resisting the calving of new icebergs and by modifying fjord currents and water properties. We have developed the first numerical model of ice mélange that captures its granular nature and that is suitable for long-timescale simulations. The model is capable of explaining why some glaciers are more strongly influenced by ice mélange than others.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024, https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Short summary
The average size of many glaciers and ice sheets changes when noise is added to the system. The reasons for this drift in glacier state is intrinsic to the dynamics of how ice flows and the bumpiness of the Earth's surface. We argue that not including noise in projections of ice sheet evolution over coming decades and centuries is a pervasive source of bias in these computer models, and so realistic variability in glacier and climate processes must be included in models.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024, https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep-water masses in the Southern Ocean is enhanced.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
The Cryosphere, 17, 5131–5136, https://doi.org/10.5194/tc-17-5131-2023, https://doi.org/10.5194/tc-17-5131-2023, 2023
Short summary
Short summary
We compare components of the surface energy balance from two datasets, ERA5 and ERA-Interim, which can be used to estimate the surface mass balance (SMB) on the Greenland Ice Sheet (GrIS). ERA5 differs significantly from ERA-Interim, especially in the melt regions with lower temperatures and stronger shortwave radiation. Consequently, methods that previously estimated the GrIS SMB from ERA-Interim need to be carefully recalibrated before conversion to ERA5 forcing.
Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 17, 4571–4599, https://doi.org/10.5194/tc-17-4571-2023, https://doi.org/10.5194/tc-17-4571-2023, 2023
Short summary
Short summary
We adopt the novel surface module dEBM-simple in the Parallel Ice Sheet Model (PISM) to investigate the impact of atmospheric warming on Antarctic surface melt and long-term ice sheet dynamics. As an enhancement compared to traditional temperature-based melt schemes, the module accounts for changes in ice surface albedo and thus the melt–albedo feedback. Our results underscore the critical role of ice–atmosphere feedbacks in the future sea-level contribution of Antarctica on long timescales.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, https://doi.org/10.5194/esd-13-935-2022, 2022
Short summary
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Ryan Schubert, Andrew F. Thompson, Kevin Speer, Lena Schulze Chretien, and Yana Bebieva
The Cryosphere, 15, 4179–4199, https://doi.org/10.5194/tc-15-4179-2021, https://doi.org/10.5194/tc-15-4179-2021, 2021
Short summary
Short summary
The Antarctic Coastal Current (AACC) is an ocean current found along the coast of Antarctica. Using measurements of temperature and salinity collected by instrumented seals, the AACC is shown to be a continuous circulation feature throughout West Antarctica. Due to its proximity to the coast, the AACC's structure influences oceanic melting of West Antarctic ice shelves. These melt rates impact the stability of the West Antarctic Ice Sheet with global implications for future sea level change.
Uta Krebs-Kanzow, Paul Gierz, Christian B. Rodehacke, Shan Xu, Hu Yang, and Gerrit Lohmann
The Cryosphere, 15, 2295–2313, https://doi.org/10.5194/tc-15-2295-2021, https://doi.org/10.5194/tc-15-2295-2021, 2021
Short summary
Short summary
The surface mass balance scheme dEBM (diurnal Energy Balance Model) provides a novel, computationally inexpensive interface between the atmosphere and land ice for Earth system modeling. The dEBM is particularly suitable for Earth system modeling on multi-millennial timescales as it accounts for changes in the Earth's orbit and atmospheric greenhouse gas concentration.
Thiago Dias dos Santos, Mathieu Morlighem, and Hélène Seroussi
Geosci. Model Dev., 14, 2545–2573, https://doi.org/10.5194/gmd-14-2545-2021, https://doi.org/10.5194/gmd-14-2545-2021, 2021
Short summary
Short summary
Numerical models are routinely used to understand the past and future behavior of ice sheets in response to climate evolution. As is always the case with numerical modeling, one needs to minimize biases and numerical artifacts due to the choice of numerical scheme employed in such models. Here, we assess different numerical schemes in time-dependent simulations of ice sheets. We also introduce a new parameterization for the driving stress, the force that drives the ice sheet flow.
William H. Lipscomb, Gunter R. Leguy, Nicolas C. Jourdain, Xylar Asay-Davis, Hélène Seroussi, and Sophie Nowicki
The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, https://doi.org/10.5194/tc-15-633-2021, 2021
Short summary
Short summary
This paper describes Antarctic climate change experiments in which the Community Ice Sheet Model is forced with ocean warming predicted by global climate models. Generally, ice loss begins slowly, accelerates by 2100, and then continues unabated, with widespread retreat of the West Antarctic Ice Sheet. The mass loss by 2500 varies from about 150 to 1300 mm of equivalent sea level rise, based on the predicted ocean warming and assumptions about how this warming drives melting beneath ice shelves.
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev., 13, 4491–4501, https://doi.org/10.5194/gmd-13-4491-2020, https://doi.org/10.5194/gmd-13-4491-2020, 2020
Short summary
Short summary
We present enthalpy formulations within the Ice-Sheet and Sea-Level System model that show better performance than earlier implementations. A first experiment indicates that the treatment of discontinuous conductivities of the solid–fluid system with a geometric mean produce accurate results when applied to coarse vertical resolutions. In a second experiment, we propose a novel stabilization formulation that avoids the problem of thin elements. This method provides accurate and stable results.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Cited articles
Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model, Geophys. Res. Lett., 47, e2019GL086810, https://doi.org/10.1029/2019GL086810, 2020. a
Adalgeirsdottir, G., Aschwanden, A., Khroulev, C., Boberg, F., Mottram, R. H., and Christensen, J. H.: Role of Model Initialisation for Projections of 21st Century Greenland Ice Sheet Mass Loss, Journal of Glaciology, 60, 782–794, https://doi.org/10.3189/2014JoG13J202, 2014. a
Åkesson, H., Morlighem, M., Nisancioglu, K. H., Svendsen, J. I., and Mangerud, J.: Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet, Quaternary Sci. Rev., 195, 32–47, 2018. a
Åkesson, H., Morlighem, M., Nilsson, J., Stranne, C., and Jakobsson, M.: Petermann Ice Shelf may not recover after a future breakup, Nat. Commun., 13, 2519, https://doi.org/10.1038/s41467-022-29529-5, 2022. a
Amaral, T., Bartholomaus, T. C., and Enderlin, E. M.: Evaluation of Iceberg Calving Models Against Observations From Greenland Outlet Glaciers, J. Geophys. Res.-Earth Surf., 125, e2019JF005444, https://doi.org/10.1029/2019JF005444, 2020. a, b
Aschwanden, A. and Brinkerhoff, D.: Calibrated mass loss predictions for the Greenland Ice Sheet, Geophys. Res. Lett., 49, e2022GL099058, https://doi.org/10.1029/2022GL099058, 2022. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a, b
Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level, The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, 2021. a, b, c
Bassis, J.: Quit worrying about uncertainty in sea level projections, Eos, Transactions American Geophysical Union, 102, https://doi.org/10.1029/2021e210632, 2021. a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf-ocean interaction for climate models, Ocean Model., 5, 157–170, 2003. a
Beckmann, J. and Winkelmann, R.: Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet, The Cryosphere, 17, 3083–3099, https://doi.org/10.5194/tc-17-3083-2023, 2023. a
Berends, C. J., van de Wal, R. S. W., van den Akker, T., and Lipscomb, W. H.: Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response, The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, 2023. a
Bintanja, R., van der Wiel, K., Van der Linden, E., Reusen, J., Bogerd, L., Krikken, F., and Selten, F.: Strong future increases in Arctic precipitation variability linked to poleward moisture transport, Sci. Adv., 6, eaax6869, https://doi.org/10.1126/sciadv.aax6869, 2020. a
Boers, N. and Rypdal, M.: Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point, P. Natl. Acad. Sci. USA, 118, e2024192118, https://doi.org/10.1073/pnas.2024192118, 2021. a
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., and Larour, E. Y.: Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland, The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, 2016. a
Bradley, A. T. and Hewitt, I. J.: Tipping point in ice-sheet grounding-zone melting due to ocean water intrusion, Nat. Geosci., 17, 631–637, 2024. a
Budd, W., Keage, P., and Blundy, N.: Empirical studies of ice sliding, J. Glaciol., 23, 157–170, 1979. a
Cannon, A., Sobie, S. R., and Murdock, T.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?, J. Climate, 28, 6938–6959, 2015. a
Choi, Y., Morlighem, M., Rignot, E., Mouginot, J., and Wood, M.: Modeling the response of Nioghalvfjerdsfjorden and Zachariae Isstrøm glaciers, Greenland, to ocean forcing over the next century, Geophys. Res. Lett., 44, 11–071, https://doi.org/10.1002/2017GL075174, 2017. a
Choi, Y., Morlighem, M., Rignot, E., and Wood, M.: Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century, Commun. Earth Environ., 2, 26, https://doi.org/10.1038/s43247-021-00092-z, 2021. a, b, c, d
Choi, Y., Seroussi, H., Gardner, A., and Schlegel, N.-J.: Uncovering basal friction in northwest Greenland using an ice flow model and observations of the past decade, J. Geophys. Res.-Earth Surf., 127, e2022JF006710, https://doi.org/10.1029/2022JF006710, 2022. a
Christian, J. E., Robel, A. A., Proistosescu, C., Roe, G., Koutnik, M., and Christianson, K.: The contrasting response of outlet glaciers to interior and ocean forcing, The Cryosphere, 14, 2515–2535, https://doi.org/10.5194/tc-14-2515-2020, 2020. a, b, c
Cowton, T. R., Slater, D. A., Sole, A. J., Goldberg, D. N., and Nienow, P.: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res., 120, 796–812, 2015. a
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th edn., Elsevier, ISBN 978-0-12-369461-4, 2010. a
Cuzzone, J. K., Young, N. E., Morlighem, M., Briner, J. P., and Schlegel, N.-J.: Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings, The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, 2022. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., MicKinnon, K., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nat. Clim. Change, 10, 277–286, 2020. a
Dickey, D. A. and Fuller, W. A.: Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, Econometrica, 49, 1057–1072, https://doi.org/10.2307/1912517, 1981. a
Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D., Charland, A., Liu, Y., Haugen, M. A., Tsiang, M., and Rajaratnam, B.: Quantifying the influence of global warming on unprecedented extreme climate events, P. Natl. Acad. Sci. USA, 114, 4881–4886, 2017. a
Edwards, T. L., Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Gregory, J. M., Hoffman, M., Huybrechts, P., Payne, A. J., Perego, M., Price, S., Quiquet, A., and Ritz, C.: Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet, The Cryosphere, 8, 181–194, https://doi.org/10.5194/tc-8-181-2014, 2014. a
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., Angelen, J. H., and Broeke, M. R.: An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling, Geophys. Res. Lett., 36, L12501, https://doi.org/10.1029/2009GL038110, 2009. a
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a
Felikson, D., Nowicki, S., Nias, I., Morlighem, M., and Seroussi, H.: Seasonal tidewater glacier terminus oscillations bias multi-decadal projections of ice mass change, J. Geophys. Res.-Earth Surf., 127, e2021JF006249, https://doi.org/10.1029/2021JF006249, 2022. a
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017. a
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., Born, A., Box, J. E., Delhasse, A., Fujita, K., Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts, P., Kapsch, M.-L., King, M. D., Kittel, C., Lang, C., Langen, P. L., Lenaerts, J. T. M., Liston, G. E., Lohmann, G., Mernild, S. H., Mikolajewicz, U., Modali, K., Mottram, R. H., Niwano, M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco, M., van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W., van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F., and Zolles, T.: GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet, The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, 2020. a, b
Friedman, J. H., Hastie, T. J., and Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9, 432–441, 2008. a
Fyke, J. G., Vizcaíno, M., Lipscomb, W., and Price, S.: Future climate warming increases Greenland ice sheet surface mass balance variability, Geophys. Res. Lett., 41, 470–475, 2014. a
Gilman, D. L., Fuglister, F. J., and Mitchell Jr., J. M.: On the power spectrum of “red noise”, J. Atmos. Sci., 20, 182–184, 1963. a
Goelzer, H., Noël, B. P. Y., Edwards, T. L., Fettweis, X., Gregory, J. M., Lipscomb, W. H., van de Wal, R. S. W., and van den Broeke, M. R.: Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections, The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, 2020. a, b, c, d, e, f, g, h, i, j, k
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Greve, R. and Herzfeld, U. C.: Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet, Ann. Glaciol., 54, 209–220, https://doi.org/10.3189/2013AoG63A085, 2013. a
Hanna, E., Fettweis, X., and Hall, R. J.: Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models, The Cryosphere, 12, 3287–3292, https://doi.org/10.5194/tc-12-3287-2018, 2018. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean Interactions at the Base of an Ice Shelf, J. Phys. Oceanogr., 29, 1787–1800, 1999. a
Hu, W. and Castruccio, S.: Approximating the Internal Variability of Bias-Corrected Global Temperature Projections with Spatial Stochastic Generators, J. Climate, 34, 8409–8418, https://doi.org/10.1175/JCLI-D-21-0083.1, 2021. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eidited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021. a, b
Jackson, R. H. and Straneo, F.: Heat, salt, and freshwater budgets for a glacial fjord in Greenland, J. Phys. Oceanogr., 46, 2735–2768, 2016. a
Joughin, I. R., Smith, B. E., Howat, I. M., Scambos, T. A., and Moon, T. A.: Greenland flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56, 415–430, 2010. a
Joughin, I., Shean, D. E., Smith, B. E., and Floricioiu, D.: A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity , The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, 2020. a
Kay, J. E., Deser, C., Phillips, A. S., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M. M., Kushner, P. J., Lamarque, J., Lawrence, D. M., Lindsay, K., Middleton, A. G., Muñoz, E., Neale, R. B., Oleson, K. W., Polvani, L. M., and Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability, B. Am. Meteorol. Soc., 96, 1333–1349, 2015. a
Kazmierczak, E., Sun, S., Coulon, V., and Pattyn, F.: Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing, The Cryosphere, 16, 4537–4552, https://doi.org/10.5194/tc-16-4537-2022, 2022. a
Khan, S. A., Choi, Y., Morlighem, M., Rignot, E., Helm, V., Humbert, A., Mouginot, J., Millan, R., Kjær, K. H., and Bjørk, A. A.: Extensive inland thinning and speed-up of Northeast Greenland Ice Stream, Nature, 611, 727–732, 2022. a
Khan, S. A., Seroussi, H., Morlighem, M., Colgan, W., Helm, V., Cheng, G., Berg, D., Barletta, V. R., Larsen, N. K., Kochtitzky, W., van den Broeke, M., Kjær, K. H., Aschwanden, A., Noël, B., Box, J. E., MacGregor, J. A., Fausto, R. S., Mankoff, K. D., Howat, I. M., Oniszk, K., Fahrner, D., Løkkegaard, A., Lippert, E. Y. H., Bråtner, A., and Hassan, J.: Smoothed monthly Greenland ice sheet elevation changes during 2003–2023, Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, 2025. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M.-J., Jeong, S., Noël, B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat, Commun. Earth Environ., 1, 1, https://doi.org/10.1038/s43247-020-0001-2, 2020. a
Krebs-Kanzow, U., Gierz, P., Rodehacke, C. B., Xu, S., Yang, H., and Lohmann, G.: The diurnal Energy Balance Model (dEBM): a convenient surface mass balance solution for ice sheets in Earth system modeling, The Cryosphere, 15, 2295–2313, https://doi.org/10.5194/tc-15-2295-2021, 2021. a, b
Lauritzen, M., Aðalgeirsdóttir, G., Rathmann, N., Grinsted, A., Noël, B., and Hvidberg, C. S.: The influence of inter-annual temperature variability on the Greenland Ice Sheet volume, Ann. Glaciol., 64, 268–275, https://doi.org/10.1017/aog.2023.53, 2023. a
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020. a
Levene, H.: Robust Tests for Equality of Variances, edited by: Olkin, I., Contributions to Probability and Statistics, Stanford University Press, Palo Alto, 278–292, 1960. a
Li, D., DeConto, R. M., and Pollard, D. D.: Climate model differences contribute deep uncertainty in future Antarctic ice loss, Sci. Adv., 9, eadd7082, https://doi.org/10.1126/sciadv.add7082, 2023. a
Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus A, 21, 289–307, 1969. a
Lowry, D. P., Krapp, M., Golledge, N. R., and Alevropoulos-Borrill, A.: The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century, Commun. Earth Environ., 2, 221, https://doi.org/10.1038/s43247-021-00289-2, 2021. a
Macayeal, D. R.: Large‐scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica, J. Geophys. Res., 94, 4071–4087, 1989. a
Mankin, J. S., Lehner, F., Coats, S., and McKinnon, K. A.: The value of initial condition large ensembles to robust adaptation decision-making, Earth's Future, 8, e2012EF001610, https://doi.org/10.1029/2020EF001610, 2020. a
McKinnon, K. A., Poppick, A., Dunn-Sigouin, E., and Deser, C.: An “observational large ensemble” to compare observed and modeled temperature trend uncertainty due to internal variability, J. Climate, 30, 7585–7598, 2017. a
Mikkelsen, T. B., Grinsted, A., and Ditlevsen, P.: Influence of temperature fluctuations on equilibrium ice sheet volume, The Cryosphere, 12, 39–47, https://doi.org/10.5194/tc-12-39-2018, 2018. a, b
Mitchell, J. M.: An Overview of Climatic Variability and its Causal Mechanisms, Quaternary Res., 6, 481–493, 1976. a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G. A., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I. G., Hogan, K. A., Howat, I. M., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L. A., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061, 2017. a, b, c
Morlighem, M., Wood, M., Seroussi, H., Choi, Y., and Rignot, E.: Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge, The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019, 2019. a
Mouginot, J., Rignot, E., Scheuchl, B., and Millan, R.: Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data, Remote. Sens., 9, 364, https://doi.org/10.3390/rs9040364, 2017. a
Mouginot, J., Rignot, E., Bjørk, A. A., Van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, 2019. a
Nowicki, S., Bindschadler, R. A., Abe-Ouchi, A., Aschwanden, A., Bueler, E., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Larour, E., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Rignot, E., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica, J. Geophys. Res.-Earth Surf., 118, 1002–1024, 2013. a
Otosaka, I. N., Shepherd, A., Ivins, E. R., Schlegel, N.-J., Amory, C., van den Broeke, M. R., Horwath, M., Joughin, I., King, M. D., Krinner, G., Nowicki, S., Payne, A. J., Rignot, E., Scambos, T., Simon, K. M., Smith, B. E., Sørensen, L. S., Velicogna, I., Whitehouse, P. L., A, G., Agosta, C., Ahlstrøm, A. P., Blazquez, A., Colgan, W., Engdahl, M. E., Fettweis, X., Forsberg, R., Gallée, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B. C., Harig, C., Helm, V., Khan, S. A., Kittel, C., Konrad, H., Langen, P. L., Lecavalier, B. S., Liang, C.-C., Loomis, B. D., McMillan, M., Melini, D., Mernild, S. H., Mottram, R., Mouginot, J., Nilsson, J., Noël, B., Pattle, M. E., Peltier, W. R., Pie, N., Roca, M., Sasgen, I., Save, H. V., Seo, K.-W., Scheuchl, B., Schrama, E. J. O., Schröder, L., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T. C., Vishwakarma, B. D., van Wessem, J. M., Wiese, D., van der Wal, W., and Wouters, B.: Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020, Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, 2023. a, b, c, d
Riahi, K., Grubler, A., and Nakicenovic, N.: Scenarios of long-term socio-economic and environmental development under climate stabilization, Technol. Forecast. Soc., 74, 887–935, 2007. a
Rignot, E., Xu, Y., Menemenlis, D., Mouginot, J., Scheuchl, B., Li, X., Morlighem, M., Seroussi, H., van den Broeke, M., Fenty, I. G., Cai, C., An, L., and de Fleurian, B.: Modeling of ocean‐induced ice melt rates of five west Greenland glaciers over the past two decades, Geophys. Res. Lett., 43, 6374–6382, 2016. a, b
Robel, A. A., Pegler, S. S., Catania, G., Felikson, D., and Simkins, L. M.: Ambiguous stability of glaciers at bed peaks, J. Glaciol., 68, 1177–1184, 2022. a
Robel, A. A., Verjans, V., Ultee, E., and Seroussi, H.: The Greenland Ice Sheet Large Ensemble: Future Simulations 2018–2203, Arctic Data Center [data set], https://doi.org/10.18739/A2VX0651F, 2025. a, b
Roberts, D. H., Lane, T. P., Jones, R. S., Bentley, M. J., Darvill, C. M., Rodes, A., Smith, J. A., Jamieson, S. S., Rea, B. R., Fabel, D., Gheorghiu, D., Davidson, A., Ó Cofaigh, C., Lloyd, J. M., Callard, S. L., and Humbert, A.: The deglacial history of 79N glacier and the Northeast Greenland Ice Stream, Quaternary Sci. Rev., 336, 108770, ISSN 0277-3791, , https://doi.org/10.1016/j.quascirev.2024.108770, 2024. a
Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S. G.: Ubiquity of human-induced changes in climate variability, Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, 2021. a, b
Roe, G. H. and Baker, M. B.: The response of glaciers to climatic persistence, J. Glaciol., 62, 440–450, 2016. a
Schwarzwald, K. and Lenssen, N. J. L.: The importance of internal climate variability in climate impact projections, P. Natl. Acad. Sci. USA, 119, https://doi.org/10.1073/pnas.2208095119, 2022. a
Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs, C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., Sein, D. V., Sidorenko, D., Wang, Q., and Jung, T.: Simulations for CMIP6 With the AWI Climate Model AWI‐CM‐1‐1, J. Adv. Model. Earth Sy., 12, e2019MS002009, https://doi.org/10.1029/2019MS002009, 2020. a
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H., and Kristensen, S. S.: Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, L09501, https://doi.org/10.1029/2011GL047338, 2011. a
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a, b
Seroussi, H., Pelle, T., Lipscomb, W. H., Abe-Ouchi, A., Albrecht, T., Alvarez-Solas, J., Asay-Davis, X., Barre, J.-B., Berends, C. J., Bernales, J., Blasco, J., Caillet, J., Chandler, D. M., Coulon, V., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Garbe, J., Gillet-Chaulet, F., Gladstone, R., Goelzer, H., Golledge, N., Greve, R., Gudmundsson, G. H., Han, H. K., Hillebrand, T. R., Hoffman, M. J., Huybrechts, P., Jourdain, N. C., Klose, A. K., Langebroek, P. M., Leguy, G. R., Lowry, D. P., Mathiot, P., Montoya, M., Morlighem, M., Nowicki, S., Pattyn, F., Payne, A. J., Quiquet, A., Reese, R., Robinson, A., Saraste, L., Simon, E. G., Sun, S., Twarog, J. P., Trusel, L. D., Urruty, B., Van Breedam, J., van de Wal, R. S. W., Wang, Y., Zhao, C., and Zwinger, T.: Evolution of the Antarctic Ice Sheet Over the Next Three Centuries From an ISMIP6 Model Ensemble, Earth's Future, 12, e2024EF004561, https://doi.org/10.1029/2024EF004561, 2024. a
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica, Earth Planet. Sc. Lett., 223, 213–224, 2004. a
Slater, D. A. and Straneo, F.: Submarine melting of glaciers in Greenland amplified by atmospheric warming, Nat. Geosci., 15, 794–799, https://doi.org/10.1038/s41561-022-01035-9, 2022. a, b
Slater, D. A., Felikson, D., Straneo, F., Goelzer, H., Little, C. M., Morlighem, M., Fettweis, X., and Nowicki, S.: Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution , The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, 2020. a, b, c, d, e, f
Slater, T., Shepherd, A., McMillan, M., Leeson, A., Gilbert, L., Muir, A., Munneke, P. K., Noël, B., Fettweis, X., van den Broeke, M., and Briggs, K.: Increased variability in Greenland Ice Sheet runoff from satellite observations, Nat. Commun., 12, 6069, https://doi.org/10.1038/s41467-021-26229-4, 2021. a
Stevens, B., Giorgetta, M. A., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI‐M Earth System Model: ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172, 2013. a
Straneo, F., Sutherland, D. A., Holland, D. M., Gladish, C. V., Hamilton, G., Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M. N.: Characteristics of ocean waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210, 2012. a
Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B. E., Fettweis, X., McConnell, J. R., Noël, B. P., and van den Broeke, M. R.: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming, Nature, 564, 104–108, 2018. a
Ultee, L., Felikson, D., Minchew, B. M., Stearns, L. A., and Riel, B. V.: Helheim Glacier ice velocity variability responds to runoff and terminus position change at different timescales, Nat. Commun., 13, https://doi.org/10.1038/s41467-022-33292-y, 2022. a, b
Verjans, V., Robel, A. A., Seroussi, H., Ultee, L., and Thompson, A. F.: The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0), Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, 2022. a, b, c, d
von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research, Cambridge University Press, https://doi.org/10.1017/CBO9780511612336, 1999. a, b
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014. a
Welch, B. L.: The generalization of “STUDENT'S” problem when several different population varlances are involved, Biometrika, 34, 28–35, 1947. a
Wernecke, A., Edwards, T. L., Nias, I. J., Holden, P. B., and Edwards, N. R.: Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data, The Cryosphere, 14, 1459–1474, https://doi.org/10.5194/tc-14-1459-2020, 2020. a
Wood, M., Rignot, E., Fenty, I. G., An, L., Bjørk, A. A., van den Broeke, M. R., Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J., Noël, B. P. Y., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.: Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7, eaba7282 https://doi.org/10.1126/sciadv.aba7282, 2021. a, b, c, d
Yang, H., Krebs-Kanzow, U., Kleiner, T., Sidorenko, D., Rodehacke, C. B., Shi, X., Gierz, P., Niu, L., Gowan, E. J., Hinck, S., Liu, X., Stap, L. B., and Lohmann, G.: Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet, Plos one, 17, e0259816, https://doi.org/10.1371/journal.pone.0259816, 2022. a
Zheng, X., Hui, C., and Yeh, S.: Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability, Clim. Dynam., 50, 4019–4035, 2018. a
Short summary
This study examines how random variations in climate may influence future ice loss from the Greenland ice sheet. We find that random climate variations are important for predicting future ice loss from the entire Greenland ice sheet over the next 20–30 years but relatively unimportant after that period. Thus, uncertainty in sea level projections from the effect of climate variability on Greenland may play a role in coastal decision-making about sea level rise over the next few decades.
This study examines how random variations in climate may influence future ice loss from the...