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Abstract. The Greenland ice sheet has lost ice at an in-
creasing pace over recent decades, driven by a combina-
tion of human-caused climate change and internal variabil-
ity in the climate system. In projections of future ice sheet
evolution, internal variability in climate results in uncer-
tainty that cannot be reduced through model improvements
due to the intrinsically chaotic nature of the climate system.
This study describes the Greenland Ice Sheet Large Ensem-
ble (GrISLENS), the first large-ensemble study of ice sheet
evolution under climate variability, which resolves individ-
ual outlet glaciers and climate variability calibrated to ob-
servations. GrISLENS combines multiple advanced model-
ing methods, including a stochastic ice sheet model, a cou-
pled atmosphere—ocean model, dynamical surface mass bal-
ance downscaling, and statistical techniques for constraining
stochastic parameterizations of climate forcing. We quantify
the role of internal climate variability in 185-year projections
of the Greenland ice sheet under both a high-emission sce-
nario and pre-2000 climate conditions. We find that spread
between ensemble members due to internal climate variabil-
ity represents a substantial fraction of the mean ice sheet
change in the first 20-30 years of simulations, which may be
important for coastal planning efforts on decadal timescales.
This spread between ensemble members decreases to a small
fraction of the total ice sheet change past 2050. At the ice

sheet scale, uncertainty in ice loss is dominated by the re-
sponse to surface mass balance variability, while the re-
sponse to ocean variability is relatively small, though its in-
fluence is more important within individual catchments. The
GrISLENS ensemble spread is relatively small compared to
that of previous studies estimating uncertainty from climate
variability in coarse models, which indicates that resolving
small-scale features in climate forcing and ice sheet dynam-
ics substantially affects the quantification of internal variabil-
ity in ice sheet mass change. On longer timescales, human
emissions of greenhouse gases and structural and paramet-
ric uncertainties in climate and ice sheet models are larger
contributors to projection uncertainties. Through our analy-
sis, we identify the need for more robust initialization meth-
ods and extension of these large-ensemble methods to the
Antarctic ice sheet.

1 Introduction

Mass loss from the Greenland ice sheet (GrIS) has con-
tributed ~ 16 % of total global sea level rise since 1992
(IPCC, 2021), driven by increasing surface melt (Fettweis
et al., 2016) and accelerated ice discharge into the ocean
(King et al., 2020). GrIS mass loss is also rapidly accelerat-
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ing: the mass loss from 2012 to 2020 was more than 5 times
the mass loss from 1992 to 2000 (Otosaka et al., 2023). Over
the 21st century, the projected contribution of the GrIS to
sea level rise is sensitive to both the greenhouse gas emis-
sion scenario and the internal variability in the climate sys-
tem (Tsai et al., 2017). While quantifying the ice sheet’s sen-
sitivity to greenhouse gas emissions has been the focus of
substantial community efforts (Nowicki et al., 2013; Goelzer
et al., 2020), less attention has been paid to quantifying the
range of possible future ice sheet evolution due to internal
variability in the climate system alone.

Projections of future GrIS mass balance are generally de-
termined from ice sheet model simulations, with prescribed
climatic forcing (e.g., Goelzer et al., 2020). A number of fac-
tors contribute to uncertainties in ice sheet model projections
(Aschwanden et al., 2021). First, structural model uncer-
tainty stems from our incomplete understanding of processes
regulating ice sheet dynamics, such as iceberg calving (Ama-
ral et al., 2020), subglacial hydrology (Kazmierczak et al.,
2022), basal sliding (Choi et al., 2022), and ice mélange
(Joughin et al., 2020). Second, some processes are not fully
resolved by the typical spatial resolution and time steps in
ice sheet models. This can be due to insufficient knowledge
of fine-scale mechanisms or computational limitations. Such
processes are parameterized using physical mechanisms and
observational constraints, but the high number of unknown
parameters in such calibration procedures implies that nu-
merical parameter values remain uncertain (Wernecke et al.,
2020; Berends et al., 2023). Third, uncertainty in initial con-
ditions impacts simulations over long periods and therefore
projections (Adalgeirsdottir et al., 2014; Yang et al., 2022).
Imperfect knowledge of the current and past states of the
GrIS has a long-lasting influence on ice sheet evolution and
observational errors in ice sheet geometry and other obser-
vational fields (Seroussi et al., 2011). To evaluate the total
uncertainty arising from these sources, ice sheet model in-
tercomparisons are performed, in which each participating
model may include different physical processes, initializa-
tion methods, parameter schemes, and numerical schemes
(Goelzer et al., 2020). The results of such intercomparisons
(the most recent being ISMIP6, Goelzer et al., 2020) have
been used as the primary source for sea level projections
by the Intergovernmental Panel on Climate Change (IPCC,
2021) and related efforts (Edwards et al., 2021).

Projections of ice sheet mass balance are also influenced
by the inherent uncertainty associated with future climate
variability (Mikkelsen et al., 2018; Robel et al., 2019). For
any given scenario of anthropogenic forcing, there remains
an “irreducible” (also called ‘“‘aleatoric”) uncertainty associ-
ated with the ice sheet response to internal climate variability
due to the fundamental unpredictability of the climate system
(Lorenz, 1969). It is common practice in the climate model-
ing community to quantify internal variability through large
ensembles, sampling different initial conditions and multi-
ple realizations of each climate model (Mankin et al., 2020;
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Deser et al., 2020). However, current ice sheet model in-
tercomparisons are not designed to quantify this aleatoric
uncertainty, as they typically force ice sheet models with a
single realization from each combination of climate models
and emissions scenario selected (e.g., Goelzer et al., 2020;
Li et al., 2023). Yet, idealized studies have demonstrated the
sensitivity of glacier evolution to processes that have compa-
rable timescales inherent to internal climate variability (Roe
and Baker, 2016; Mikkelsen et al., 2018; Robel et al., 2018;
Christian et al., 2020; Verjans et al., 2022). For example, pro-
cesses that are poorly represented in climate models, such as
atmospheric blocking (Hanna et al., 2018), might have an im-
portant effect on GrIS projections (Beckmann and Winkel-
mann, 2023). Despite this known strong sensitivity of the
GrIS to climate forcing, sensitivity to internal climate vari-
ability and associated irreducible uncertainties remain poorly
quantified (Aschwanden et al., 2021).

To understand the importance of internal climate variabil-
ity for ice sheet mass balance over the next 200 years, large-
ensemble experiments are a viable approach. In recent years,
global climate model (GCM) large ensembles have been pro-
duced and made available as community data sets (e.g., Kay
etal., 2015; Rodgers et al., 2021). This has enabled the inves-
tigation of many questions, such as possible future changes
in modes of climate variability (Zheng et al., 2018), sen-
sitivity of the overall climate variability spectrum to forc-
ing (Rodgers et al., 2021), attribution of extreme-weather
events to anthropogenic forcing (Diffenbaugh et al., 2017),
and evaluation of the range of possible socioeconomic im-
pacts of climate change (Schwarzwald and Lenssen, 2022).
Internal climate variability has also been extensively ex-
plored through observational studies (Mitchell, 1976; McK-
innon et al., 2017). This inherent feature of the climate sys-
tem therefore deserves attention, including its impacts on the
evolution of the GrIS.

Tsai et al. (2017) attempted the only prior study on the
role of internal climate variability in the evolution of the
GrIS. Their approach used 40 and 50 members of two dif-
ferent coarse GCM large ensembles as direct climate forcing
for Greenland ice sheet model simulations over the 21st cen-
tury. They found that, under a high-emission scenario, the
spread in sea level rise contribution by 2100 between ensem-
ble members is ~ 17 % of their ensemble mean simulated ice
sheet mass loss. However, this method faces two limitations.
First, the coarse resolution of GCM outputs (~ 100 km grid
scale, monthly time steps) implies limited representation of
processes with strong spatial gradients. Second, GCM out-
puts do not correspond directly to inputs needed for ice sheet
models, and thus some assumptions have to be made for such
conversions, such as simplified empirical relationships be-
tween atmospheric temperature and ice sheet surface mass
balance. Furthermore, Tsai et al. (2017) ran their ice sheet
model at a coarse resolution over the GrIS (20 km), therefore
potentially not resolving individual outlet glaciers, almost all
of which are less than 20 km wide in Greenland. The use of
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such a coarse resolution has been shown to induce substan-
tial quantitative impacts on ice sheet model results (Greve
and Herzfeld, 2013). Still, the results of Tsai et al. (2017)
have demonstrated that uncertainty associated with internal
climate variability may amount to a non-negligible fraction
of future GrlIS change and may persist on decadal to centen-
nial timescales.

In this study, we describe the Greenland Ice Sheet Large
Ensemble (GrISLENS), a modeling experiment estimating
the GrIS sensitivity to internal climate variability down to
sub-kilometer scales. We apply a novel stochastic model-
ing approach to address this question. Specifically, we cal-
ibrate spatiotemporal stochastic models to downscale GCM
outputs and subsequently use them to force ice sheet model
simulations spanning 2018 to 2203. Our results quantify
model spread in GrIS mass change, ice thickness change, and
glacier retreat, all associated with internal climate variabil-
ity. We compare this spread with ensemble mean change un-
der different mean forcings and with differences in projected
ice sheet mass between different ice sheet and climate mod-
els from prior intercomparison studies. Finally, we make our
model output openly available to enable future investigations
into the role of internal climate variability in driving ice sheet
change, similar to the growing use of large-ensemble climate
model outputs in climate sciences.

2 Methods

The ensemble of simulations presented in this study is the
culmination of prior work to develop methods which can
stochastically generate realistic climate forcing for ice sheet
models down to sub-kilometer spatial scales. At the base of
these methods is output from a climate model spanning both
the historical period over which the ice sheet model is ini-
tialized and a period of several centuries into the future over
which the evolution of the GrIS is expected to unfold. Atmo-
spheric forcing is then converted and downscaled to surface
mass balance (SMB) using a high-resolution energy-balance
model (Krebs-Kanzow et al., 2020) and used to calibrate
a stochastic SMB parameterization for every glacier catch-
ment in Greenland using the method described by Ultee et al.
(2024). Ocean forcing is calibrated to available observations
of ocean properties around Greenland, downscaled to fjords,
and then used to calibrate stochastic parameterizations of
ocean thermal forcing for every marine-terminating glacier
catchment in Greenland using the method described by Ver-
jans et al. (2023). The stochastic parameters of these methods
are then input directly into the Stochastic Ice-Sheet and Sea-
Level System Model (StISSM; Verjans et al., 2022), which
internally generates realistic and correlated climate variabil-
ity to force the ice sheet model equations. While the details
of these methods can be found in the studies cited above, ad-
ditional methodological developments needed for this study
are described below. All model output discussed in this study
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and the code used to generate figures are openly archived in
a persistent repository at the Arctic Data Center (Robel et al.,
2025).

2.1 Ice sheet model forcing

For our simulations, stochastic realizations of the three cli-
matic variables are generated (as described in detail below)
within the ice sheet model, the Stochastic Ice-Sheet and
Sea-Level System Model (StISSM; Verjans et al., 2022).
StISSM generates noise, computes the corresponding time
series (Eq. A2), and performs the SMB lapse rate correc-
tions within the evolving ice sheet simulation. Within each
catchment, local spatial variations in SMB (A(z)) and feed-
backs with ice sheet elevation are represented through a sim-
ple piecewise function of elevation:

co+ciz O<z<zi

A(z) = 21<z2<2 (D

72 < z(p) < z3,

co+c1z1+ce2z
co+c1z1t+cnntcaz

where ¢ is the minimum SMB, and the segment slopes
(c1, 2, c3) and breakpoints (z1, z2) are free parameters that
must be calibrated. Stochastic catchment-wide anomalies in
SMB are generated using a method described in brief be-
low and in detail in Ultee et al. (2024). Doing these com-
putations within the ice sheet model is preferable to capture
feedbacks with ice sheet geometry (on SMB in particular)
and correlations between climate forcing variables and to
avoid uncertain conversions from inputs to ice sheet model
quantities. Runoff and thermal forcing (TF) are used as forc-
ings for a parameterization of frontal melt rate (mg) at a
grounded marine-terminating glacier, as described by Rignot
et al. (2016):

rive = (Ahwqgy + B)TFP, (2)

where ggo is the subglacial water flux [m d~!1, and hy
is the water depth [m]. The calibration parameter values
are A=3x10"*m*d* 'K # B=0.15md 'K #, a =
0.39, and B = 1.18 (Rignot et al., 2016). We substitute the
catchment-integrated runoff generated by StISSM for gsg,
thus assuming that all the runoff over a given time step is
discharged immediately at the marine front in catchments in
contact with the ocean.

For floating ice, we follow a simplification of the “three-
equation” melt parameterization (Holland and Jenkins, 1999;
Beckmann and Goosse, 2003):

mg = PwCpM YT FinTF, 3)

where py, is the ocean water density (1023kgm™3),
cpm is the ocean mixed-layer specific heat capacity
(3974Jkg='K~!), yr is the thermal exchange velocity
(10~*ms~!), and Fp, is an empirical melt factor set to 0.203
following Favier et al. (2019).
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2.2 Climatic forcing
2.2.1 Reference climate model simulation

Atmospheric and ocean forcing for our Greenland simula-
tions is based on a 1850-2203 simulation of the Alfred We-
gener Institute Earth system model (AWI-ESM; Ackermann
et al., 2020). The ocean model implemented in AWI-ESM
is FESOM1.4 (Wang et al., 2014). It employs an unstruc-
tured grid with a resolution of ~ 20km around Greenland.
The atmosphere is represented with the ECHAM6 model
(Stevens et al., 2013) using a horizontal resolution of 1.85°
(50-100km across Greenland). After the historical period
1850-2005, the simulation that we use follows the high-
emission scenario RCP8.5 (Riahi et al., 2007) until 2100 and
keeps the atmospheric CO»-equivalent forcing fixed at the
2100 level for the 2101-2203 period. We note that in recent
GCM intercomparisons, AWI-ESM shows behavior close to
the multi-model average in terms of key climatic features,
such as equilibrium climate sensitivity and transient climate
response (Semmler et al., 2020).

2.2.2 Atmospheric forcing

AWI-ESM atmospheric fields over Greenland are down-
scaled at 5km horizontal resolution using the diurnal En-
ergy Balance Model (dEBM; Krebs-Kanzow et al., 2020).
In a recent intercomparison of SMB from different regional
climate models (Fettweis et al., 2020), dEBM GrlS-averaged
SMB was shown to be less than 20 % of the ensemble stan-
dard deviation from the ensemble mean SMB and to exhibit
temporal dynamics within the uncertainty range of gravime-
try observations. We use the SMB and runoff output fields
from dEBM, and we process these variables at the catch-
ment level. Specifically, we use the 253 catchment delimita-
tions of Mouginot et al. (2017) over the contiguous GrIS. We
take the average SMB and the total runoff over each catch-
ment and aggregate the monthly values at an annual resolu-
tion. As such, each catchment has a single 1850-2203 an-
nual time series for both SMB and runoff, which can serve
to calibrate stochastic time series in the models, as detailed
in Sect. 2.2 (see also Ultee et al., 2024). In this study, we
regard SMB as an annual variable, as sub-annual variability
in SMB is unlikely to play a strong role in ice sheet dynam-
ics over decadal to centennial timescales (Robel et al., 2019;
Christian et al., 2020). However, we do account for monthly
variability in runoff by computing the average fraction of the
annual runoff occurring in each month for each individual
catchment, since monthly runoff affects melt at the ocean in-
terface (see Sect. 2.2.3). Within-catchment spatial variability
in SMB is captured through the estimation of the slope of
SMB-elevation profiles, as described in Ultee et al. (2024).
Further details and examples for this specific study can be
found in Appendix B.
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2.2.3 Ocean forcing

Ocean forcing for the ice sheet model is derived from vari-
ations in ocean temperature and salinity simulated by AWI-
ESM. In our ice sheet modeling framework, the ocean melt
rate parameterization uses thermal forcing (TF), the water
temperature above freezing point. TF is integrated through
depth to calculate parameterized melt rates at glacier fronts.
As waters around Greenland are stratified, generally with
cold and fresh Arctic water above warmer and saltier At-
lantic waters (Straneo et al., 2012), the depth range over
which TF is integrated strongly influences the melt rates
calculated. We find the effective depth of each Greenland
marine-terminating glacier, which is defined as the deepest
bathymetry connected to the open ocean without a barrier
(e.g., Morlighem et al., 2019; Slater et al., 2020). We use the
BedMachine v4 product for the bathymetry around Green-
land (Morlighem et al., 2017). For each marine-terminating
glacier, we integrate TF from the surface until its effec-
tive depth (which does not vary with ice sheet evolution),
and each glacier is thus assigned a specific field of depth-
integrated TF time series. For a detailed discussion of this
choice of method for calculating TF, see Appendix C.
Throughout this study, we use the notation TF to refer to this
depth-integrated value. We further adjust the AWI-ESM TF
following a two-step procedure, as summarized below and
detailed at length in Verjans et al. (2023).

First, we bias correct the AWI-ESM TF based on the EN4
ocean monthly objective analyses (Good et al., 2013). EN4 is
an interpolated product of ship-based oceanic observations,
which is constrained more closely to observations compared
to dynamical reanalysis products. Though this interpolation
ensures better agreement with in situ data, EN4 is more prone
to errors in the case of observational uncertainties and if
some periods and/or regions have sparse observational cov-
erage. For each AWI-ESM grid point, we perform the bias
correction with the nearest EN4 grid point using the 1950—
2006 TF from AWI-ESM and EN4, which corresponds to the
pre-RCP8.5 forcing in AWI-ESM. The period before 1950 is
not used for the bias correction because EN4 is poorly con-
strained by observations (Verjans et al., 2023). The bias cor-
rection follows a quantile-delta-mapping procedure (Cannon
et al., 2015; Verjans et al., 2023). This procedure calibrates
both the mean and the amplitude of variability in AWI-ESM
to EN4 while preserving the relative changes in time of TF
as modeled by AWI-ESM.

Second, we downscale the bias-corrected TF from the
AWI-ESM grid to fjord mouths. The extrapolation is based
on statistical relations found between shelf waters and fjord
mouth conditions in the output of a high-resolution ocean
model reanalysis, ECCO2-Arctic (Nguyen et al., 2012).
These statistical relations are derived for the long-term mean
TF and for the seasonal and non-seasonal variability. The
fjord mouth locations are selected as the closest ECCO2-
Arctic grid point to each Greenland glacier front from Wood
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et al. (2021), with bathymetry at least as deep as the effec-
tive depth. The data set of glacier fronts includes 226 distinct
marine-terminating glaciers.

All our climatic forcing procedures are performed at the
catchment scale, but some catchments include no or more
than one marine-terminating glacier. As each catchment is
assigned a single set of TF statistics, we select a single TF
series for catchments with more than one marine-terminating
glacier. We select the TF series of the glaciers with the
deepest effective depth because these glaciers generally have
more impact on the total mass balance of the GrIS. As such,
there are 50 glaciers which are assigned a TF time series
of a neighboring glacier with a deeper effective depth. For
these 50 pairs of time series, the 0.5, 0.75, and 0.95 quan-
tiles of the root mean square deviation are 0.7, 1.5, and
2.1 K, respectively. For the 77 catchments without marine-
terminating glaciers, TF does not need to be prescribed.

2.3 Stochastic representation of climatic forcing
2.3.1 Calibration of stochastic climate forcing

Starting from the AWI-ESM outputs, three climatic vari-
ables, with time series for each glacier catchment, are post-
processed: TF, SMB, and runoff. We separate each annual
time series into a deterministic and a stochastic component.
The former accounts for the mean forcing and trends, e.g.,
under the RCP8.5 emissions scenario. The latter accounts
for the irreducible uncertainty associated with natural cli-
mate variability and is the residual obtained from the orig-
inal time series by removing the deterministic component.
To fit stochastic time series models, the residual variability
should be stationary and homoskedastic, i.e., without trends
and with constant variance over time (von Storch and Zwiers,
1999). For our three variables, we find that residual variabil-
ity is stationary if we account for deterministic components
that are piecewise linear in time (breakpoints in 2000, 2050,
and 2100) and normalize the variance of the residuals (cre-
ating a normalized “z-score” series) to account for change in
the amplitude of variability over time for each of the three
sub-periods. The breakpoints are chosen to capture periods
of change in the mean and variability amplitude of climate
forcing such that normalized variability is stationary (see be-
low). We chose 2100 as a breakpoint since emissions are held
constant after this point in the RCP8.5 climate model simula-
tion described above. We find that just one more breakpoint
is needed between 2000 and 2100 to capture the change in
the mean and variability amplitude of climate forcing, and
for expediency we choose the midpoint of this period. An
example of this is illustrated in Fig. 1 for Humboldt Glacier
(northeastern Greenland). The original annual time series of
our three variables, shown in blue, are well represented by
piecewise-linear time series, shown in red. The difference be-
tween them is the residual variability, shown in green. The
latter is well centered around 0O, showing that the secular
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trends are correctly captured by the piecewise-linear func-
tions with the specified breakpoints. However, the residual
variability time series clearly show increasing variance in
time. Once normalized, the resulting z-score time series are
stationary, trendless, and homoskedastic across time.

To validate our approach for generating standardized
residual variability time series, we use the augmented
Dickey—Fuller test (Dickey and Fuller, 1981). We have 253
time series for SMB, 247 for runoff because 6 catchments
have zero runoff over the entire simulation period, and 176
for TF because 77 catchments have no marine-terminating
glaciers, thus resulting in 676 z-score time series in total. The
null hypothesis of non-stationarity in the augmented Dickey—
Fuller test is rejected with significance for all 676 z-score
time series (p values < 0.05).

We fit stochastic time series models to the annual z-score
time series. More specifically, we calibrate an autoregres-
sive moving-average (ARMA) model to each individual time
series. ARMA processes are efficient representations of cli-
matic variables, as they can capture an extensive range of
timescales while using a small number of parameters (Has-
selmann, 1976; von Storch and Zwiers, 1999; Wilks, 2011).
Thus, by representing the residual variability component of
our climatic variables of interest as an ARMA process, we
aim to capture the interannual to decadal timescales of cli-
mate variability that force the GrIS climate. Further discus-
sion on the validity of using ARMA models to capture SMB
and TF variability can be found in Ultee et al. (2024) and
Verjans et al. (2023), respectively.

For each time series, we calibrate all possible combina-
tions of ARMA models with autoregressive (AR) orders and
moving-average (MA) orders ranging from O to 4. We use
the well-established Bayesian information criterion (BIC;
Schwarz, 1978) to select ARMA models that best fit the tar-
get time series, with a penalty proportional to the number of
parameters used. Figure Al shows the selected ARMA com-
binations for our three climatic variables and for all the catch-
ments. A large majority of catchments have their SMB and
runoff z-score time series best described as an interannual
white noise process, which corresponds to an ARMA(0,0)
process, i.e., without memory of previous years. Only 39 of
the 253 SMB time series and 15 of the 247 runoff z-score
series include a lag term (i.e., the p order of ARMA(p, q)).
In contrast, only 19 of the TF z-score series are best fitted
by annual white noise. Most (70 %) have an ARMA(1,0) as
their best-fitting model, and 6 % include a second-order lag
term (i.e., ARMA(2, q); Fig. Al). The fact that very few of
the best-fitting parameterizations include a moving-average
component (g > 0) is not surprising and follows considerable
prior work (Gilman et al., 1963; Hasselmann, 1976), showing
theoretically and empirically that climatic variables are well
described as purely stochastic autoregressive processes due
to the memory implicit in systems with finite heat capacity.

We account for correlation between all the z-score time
series such that time series stochastically generated with
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Figure 1. Annual climatic forcing time series at the catchment of Humboldt Glacier (see Fig. 7a for location). Original forcing time series
are in blue, fitted piecewise-linear functions are in red, and residual variability is in green. The residual variability is obtained by subtracting
the piecewise-linear function from the original series. Breakpoints of the piecewise-linear functions are shown with dotted lines. The residual
variability is then standardized to unit variance separately in each sub-period to have unit variance. Standardized residual variability time
series are shown in black in the right column. Bias-corrected and extrapolated TF (a) and its rescaled residual variability (b). SMB (c) and
its rescaled residual variability (d). Runoff (e) and its rescaled residual variability (f).

ARMA models reproduce the desired level of interdepen-
dence between catchments and climatic variables (e.g., Ul-
tee et al., 2024). For this purpose, we calculate the empir-
ical correlation matrix between the residuals of the fitted
676 z-score time series. The residuals are obtained after fit-
ting the optimal ARMA model to a given time series such
that the stochastic component ¢, (see Eq. A2) is isolated.
Isolating residuals allows us to first remove potential spu-
rious correlations between catchments and variables that ap-
pear in the raw time series caused by temporal autocorrela-
tion. This autocorrelation is removed from the ARMA resid-
uals, and the remaining correlations found capture cross-
spatial and cross-variable dependencies. However, because
the number of entries in the correlation matrix to be estimated
(% x676x675 =228 150) is large compared to the number of
yearly samples (354), we compute a sparse correlation matrix
(Hu and Castruccio, 2021) with the commonly used graphi-
cal lasso method (Friedman et al., 2008). For all variables,
correlation patterns are strong within eastern and western
Greenland but weaker between eastern and western Green-
land. The cross-correlation between TF and the two other cli-
matic variables is very low, while SMB and runoff are anti-
correlated, as expected. To generate stochastic annual time
series of our three climatic variables, we use different co-
variance matrices for our different sub-periods separated by
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the 2000, 2050, and 2100 breakpoints. All covariance ma-
trices share the same correlation structure described above.
However, the covariance magnitudes are scaled to match the
different amplitudes of variability between the different peri-
ods, and this procedure is detailed in Appendix A2.

At the end of our processing of the annual climatic time
series, we derived deterministic piecewise-linear functions
to capture the long-term mean and trends in TF, SMB, and
runoff. In addition, we calibrated all the components of the
stochastic time series models (see Eqs. A2, A3) to represent
the spatiotemporal climatic variability, accounting for inter-
variable and inter-catchment covariability. Finally, we also
derived catchment-specific lapse rates to capture the eleva-
tion dependence of SMB, which is important to account for
within-catchment variability in SMB and for SMB—elevation
feedback as the ice sheet geometry changes during the long
simulation period (Edwards et al., 2014; Ultee et al., 2024).

2.3.2 Sub-annual variability

In general, we neglect sub-annual variability in SMB because
high-frequency variability in SMB exerts a minor influence
on decadal- and longer-timescale ice dynamics compared to
other forcings (Robel et al., 2019; Christian et al., 2020; Ul-
tee et al., 2022). However, we account for seasonal variabil-
ity in both runoff and TF, for which short-term variability ex-
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erts a stronger control on the evolution of marine-terminating
glaciers (Felikson et al., 2022; Slater and Straneo, 2022; Ul-
tee et al., 2022)

For TF, we follow Verjans et al. (2023) and add a clima-
tological anomaly calculated from AWI-ESM output as the
anomaly from the long-term mean for each calendar month
and for each marine-terminating catchment. However, we ob-
serve that seasonality changes strongly over the period of our
simulations. This is particularly true for marine-terminating
glaciers in northern Greenland, for which the zero bound
on TF due to sea-ice presence progressively vanishes for
an increasing number of months. To incorporate this chang-
ing seasonality, we fit piecewise-linear functions for each
monthly climatological anomaly with breakpoints in 2000,
2050, and 2100.

For runoff, we compute the fraction of the total annual
runoff occurring in each month for each catchment averaged
over the multi-decadal period between breakpoints (2000—
2050, 2050-2100, 2100-2203). As such, the 12-monthly
fractions sum to 1 and are catchment-specific. Since annual
total runoff is concentrated in just a few months and is other-
wise zero, we calculate runoff seasonality to prevent spurious
winter runoff. In our ice sheet model simulations, the annual
runoff is distributed over any given year according to these
fractions.

2.4 Calibration and transient initialization of ice sheet
model

Prior to running stochastic transient simulations until 2203,
we initialize the ice sheet model and calibrate model param-
eters to match the ice sheet state and its transient evolution
over the period 2007-2017.

2.4.1 Ice sheet model initialization

We configure the GrlIS initial state with the bed topog-
raphy, ice thickness, and ice mask from BedMachine v4
(Morlighem et al., 2017); the 2007 ice velocity field from
Joughin et al. (2010); the geothermal heat flux from Shapiro
and Ritzwoller (2004); and surface temperature from Ettema
et al. (2009). To approximate the stress balance equation and
enable many long simulations in the ensemble, we use the
shallow shelf approximation (Macayeal, 1989). Using this
approximation over the entire ice sheet neglects vertical de-
formation ice sheet flow, particularly in the ice sheet interior
where ice is more likely to be frozen to the bed. However,
over the centennial timescales considered in this study, these
errors are unlikely to be significant on the scale of the entire
ice sheet where most ice transport near the margins occurs
via basal sliding. We solve a thermal steady-state model in
three dimensions with 10 vertical levels and compute verti-
cal temperature profiles. The ice rheology field is then calcu-
lated following the temperature-dependent parameterization
of Cuffey and Paterson (2010) and is subsequently depth-

https://doi.org/10.5194/tc-19-3749-2025

averaged to be used in the two-dimensional model configu-
ration of this study. Basal friction is set by the Budd sliding
law (Budd et al., 1979):

Ty = —CgubN, 4

where 11, is the basal stress [Pa], uy, is the basal ice veloc-
ity [myr~'], and Cg is the basal friction coefficient [m~! yr].
In areas with ice thickness larger than 500 m, we invert for
its value based on the observed velocity field. We perform a
linear regression of the inverted Cg field with respect to bed
topography to calculate C? in regions where ice thickness
is < 500m or absent, which allows possible expansion of
the ice sheet during the transient simulations. This is a com-
mon approach in ice sheet model simulations (Akesson et al.,
2018; Cuzzone et al., 2022), where advance onto currently
ice-free portions of the bed may occur and parameterizes the
general pattern that deep portions of the bed are likely to have
accumulated deformable marine sediments when they were
covered by ocean rather than ice.

The domain is meshed with a variable horizontal resolu-
tion, ranging from 25 km in the slow-flowing interior of the
GrIS to less than 1 km in the fastest-flowing areas at the ice
sheet edge. We simulate dynamic calving front migration at
148 marine-terminating glaciers using the level set method,
and we apply streamline upwinding for numerical stability
(described in Bondzio et al., 2016). Choi et al. (2021) identi-
fied these 148 glaciers as having sufficiently well-constrained
bathymetry from the data set of Wood et al. (2021). For the
remaining, mostly smaller 78 glaciers of the data set of Wood
et al. (2021), we keep the calving front fixed during the sim-
ulations. In the vicinity of the 148 dynamic glacier fronts, we
refine the mesh resolution to 800 m. We cannot predict how
far glaciers retreat by the end of the simulation period a priori
and thus how far inland the refined mesh should be extended
in order to accommodate glacier retreat. We therefore use
a pragmatic approach by extending the refined regions sev-
eral tens or even hundreds of kilometers inland for the largest
glaciers with the most influence on the total GrIS mass bal-
ance. For the majority of small marine-terminating glaciers,
we limit the refined regions to 10-30km inland in order to
limit computational expense associated with the very high
mesh resolution. A posteriori, we find that in our simulations
with the strongest warming and thus the highest retreat rates,
9 of the 148 marine-terminating glaciers retreat up to their
limit of the refined region. No retreat beyond that point is
simulated for these glaciers, and the simulated ice mass loss
estimations from these nine relatively small glaciers is there-
fore affected. Despite this limitation, our adoption of limited
refined regions is a reasonable compromise because ice dis-
charge from the GrIS is dominated by a small (< 20) number
of large glaciers (Enderlin et al., 2014). At none of the 20
largest marine-terminating outlet glaciers does retreat extend
beyond the region of the refined mesh.
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Figure 2. Greenland ice sheet total ice mass change during the cali-
bration period (2007-2017). The model results (red) are shown next
to the Ice Sheet Mass Balance Intercomparison Exercise (IMBIE)
estimate (black, Otosaka et al., 2023) and uncertainty range (shaded
grey) for comparison.

2.4.2 Ice sheet model calibration

After the initialization, we perform a short 11-year calibra-
tion run over the period 2007-2017. This calibration run
does not explicitly include stochasticity in the climate forcing
but does include the climate forcing exactly as simulated by
AWI-ESM for this time period, which includes internal vari-
ability. Thus, any drift induced by variability during this pe-
riod is retained (Robel et al., 2024). Stochastic forcing during
this calibration run would necessitate a separate calibration
for every ensemble member, which would produce paramet-
ric differences between ensemble members that are orthogo-
nal to the scientific goals of this study. This is perhaps a lim-
itation of calibrating over a short time period, which is dis-
cussed at length in Sect. 4. For runoff, we use the annual and
monthly dEBM output over 2007-2017. For SMB, we use
SMB-elevation profiles fit from dEBM output (Sect. 2.2.1)
to describe the mean forcing over 2007-2017 in each catch-
ment and downscale SMB onto the model mesh. For TF, we
use the extrapolated and bias-corrected output of AWI-ESM
(see Sect. 2.1.3) during this time period.

The goal of this calibration run is to calibrate the calv-
ing scheme to be used in our transient simulations such that
the transient tendency of the ice sheet matches recent ob-
servations. We use the von Mises calving parameterization
from Morlighem et al. (2016), where the calving rate is set
as a fraction of the ice flow speed at the terminus depending
on the local stress state. When local tensile stress is above
a stress threshold, omax, the calving rate exceeds the local
speed of ice flow, and the terminus retreats overall due to
calving. We set the calving rate to zero if the bedrock is
above sea level. We calibrate opy,x on a glacier-by-glacier ba-
sis, and we use two observational constraints for the calibra-
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tion. First, we adjust opmax at each marine-terminating glacier
so that the simulated terminus retreats match the observed
retreats along flowlines from Wood et al. (2021) over the
calibration period. We use the same set of tunable glaciers
with sufficiently well-constrained bathymetry as the method
developed by Choi et al. (2021), corresponding to the 148
glaciers where dynamic ice front motion is simulated, driven
by calving rates and frontal melting rates (Eqs. 2-3). For
glaciers with an ice shelf in northern Greenland, we assume
that omax of floating ice is 30 % of its value for upstream
grounded ice, following Akesson et al. (2022). As a second
metric for our calibration, we use the total GrIS mass loss
over 2007-2017 from IMBIE (Otosaka et al., 2023), which
amounts to 25394114 Gt. As shown by Goelzer et al. (2020),
most ice sheet models underestimate Greenland mass loss
over the recent historical period. Here, in our model calibra-
tion, we prioritize matching the observed total mass loss over
matching individual glacier retreat rates. Based on our two
observational constraints, we establish a simple calibration
framework: we target 2007-2017 GrIS mass loss within ob-
servational uncertainties, under the constraint that the sim-
ulated retreat values of the 148 marine glaciers are within
1km of the observed retreat values. All calibration occurs
by modifying omax at marine-terminating glaciers to match
both constraints at individual glaciers and the whole ice sheet
mass balance.

Figure 2 shows the total ice sheet mass change record from
IMBIE (Otosaka et al., 2023), which is compared with the
modeled mass loss from our calibration run. The total mod-
eled 2007-2017 mass change agrees with the observational
record within uncertainty ranges, even though the modeled
mass loss rate is over- and underestimated in the early and
later years of the calibration period, respectively. Figure G1
shows a comparison of thickness change over the calibra-
tion period with observations, showing generally good agree-
ment, particularly near the ice sheet margins, with modeled
thickening in the ice sheet interior slightly higher than in the
observations.

This departure from the IMBIE observations of ice sheet
is an unavoidable product of having a relatively short calibra-
tion period (11 years) in comparison to the natural response
time of glacier termini (multi-decadal and longer timescales;
Robel et al., 2018). Inaccuracies in the 2007 ice sheet state,
which is derived from a mass-conserving data assimilation
scheme (Morlighem et al., 2017), transiently adjust to the
stress balance approximation and to the assumption of the
von Mises calving parameterization with calibrated values of
omax at all glaciers. These imperfect initial conditions and
model physics combine to cause the temporary departure
from the observed mass loss trajectory.

Figure 3 compares the observed and modeled 2007-2017
retreat rates at the 148 marine glaciers subject to calibra-
tion of opax. Our calibration procedure yields a coefficient
of determination (R2) of 0.60 and root mean square error
of 1.6km, where these performance metrics are computed
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over the entire glacier population. While we are generally
able to meet our constraint of simulated calving front re-
treats within 1 km of the observations, it is apparent from the
RMSE greater than 1 km that we overestimate the retreat of
79° North in northeastern Greenland and underestimate the
retreat of Sermeq Kujalleq (“SK”, previously known by its
Danish name Jakobshavn Isbre). Prior studies have indicated
that 79° North may be vulnerable to large retreats in the near
future (Choi et al., 2017) and during the Holocene (Roberts
et al., 2024). In our calibration run, this sensitivity of 79°
North results from the high sensitivity of the von Mises calv-
ing parameterization: this glacier exhibits a threshold-like
behavior as it either retreats or advances excessively during
calibration for any omax value. Our aim in using this cali-
bration procedure is to approximate the first-order tendency
of the ice sheet and glacier termini in 2017 using currently
available best practices (Choi et al., 2021), in the absence
of existing ice sheet reanalysis products similar to those that
exist for the atmosphere and ocean. We discuss these chal-
lenges for future work on the calibration procedure further in
Sect. 4.

2.5 Transient runs 2018-2203

We use our statistical models of processed climatic forcing
and calibrated ice sheet model configuration to perform long-
term simulations of the GrIS. Using StISSM, we perform
several ensemble experiments, as detailed in this section (and
listed in Table 1). All simulations start from 2018, i.e., from
the final state of the calibration run, and run until 2203. This
simulation period is chosen to align with availability of cli-
mate forcing from AWI-ESM simulations (maximizing the
length of the simulation rather than ending in 2200). We run
two deterministic simulations for each of the scenarios con-
sidered, applying the mean climate forcing (pre-2000 con-
trol and RCP8.5 emissions scenario) but no internal climate
variability. All other simulations include stochastically gen-
erated climatic forcing calibrated to the long-term outputs
from AWI-ESM and dEBM, as detailed in Sect. 2.1 and 2.2.

2.5.1 Pre-2000 control

In order to compare the influence of natural variability ver-
sus forced trends on the GrIS, we perform a control ensem-
ble (indicated hereafter by the term CTRL) with stationary
forcing from the AWI-ESM pre-industrial climate. In other
words, CTRL ensembles assume no trend in SMB, runoff,
or ocean thermal forcing: the mean state, covariance matrix,
and internal climate variability statistics are held constant to
their 1850-1999 levels. Note that the pre-2000 climate con-
ditions are applied immediately at the end of the calibration
run, which induces an abrupt but low-magnitude change to-
wards a cooler climate at the start of the transient simula-
tions (Fig. F1). All ensemble members share the same forc-
ing statistics. However, they differ by different random real-

https://doi.org/10.5194/tc-19-3749-2025

3757

izations of the internal variability component in the climate
forcing throughout the simulation. The resulting large pre-
2000 control ensemble (CTRL-LE) consists of 100 member
simulations.

2.5.2 High-emissions scenario (RCP8.5)

To quantify the relative importance of forced trends in mean
climate relative to internal variability, we perform an en-
semble with changing mean climate forcing following the
high-emission RCP8.5 scenario simulation of AWI-ESM (in-
dicated hereafter by the term WARM). As described in
Sect. 2.3.1, we fit piecewise-linear trends separately for each
glacier catchment for TF, SMB, and runoff forcings with
breakpoints in 2000, 2050, and 2100. The changing ampli-
tude of climate variability in this forced climate model sim-
ulation (Fig. 1) also requires us to specify a different covari-
ance matrix for each of these periods (see Appendix A). The
resulting large RCP8.5 ensemble (WARM-LE) consists of
100 member simulations.

We briefly note that our choice of the RCP8.5 high-
emissions scenario is mainly motivated by expediency, with
availability of long-running climate model simulations, and
easy comparison to other ice sheet model intercomparison
projects. The two scenarios considered (CTRL and WARM)
are meant to be end members of a broad range of potential fu-
ture emissions scenarios. Future work could further investi-
gate this question by running large ensembles for other emis-
sions scenarios and other global climate models.

2.5.3 Small ensembles

To diagnose the drivers of variability in the simulated GrIS
mass change, we perform several additional smaller sub-
ensembles with 30 members each, both for the WARM and
the CTRL forcings (detailed in Table 1). Specifically, we
perform stochastic ensembles with variability only in SMB
(OnlySMB-SE), variability only in ocean TF (OnlyOCN-
SE), and with variability in all variables but zero covari-
ance between all variables and catchments (NoCOV-SE).
The NoCOV-SE applies a diagonal covariance matrix X, i.e.,
without any correlation between different variables and dif-
ferent catchments, but with the magnitude of variability on
the main diagonal identical to that of the corresponding full
ensemble. For the WARM ensemble only, we also perform
an additional small ensemble (WARM-STN-SE), where the
covariance matrix does not change in time and is fixed to the
covariance matrix of the 2000-2050 period; i.e., the inter-
nal climate variability is stationary. This eliminates the in-
crease in amplitude of climate forcing variability in WARM,
but the deterministic trend of WARM-STN-SE is identical
to the WARM scenario. For the CTRL ensemble, we also
performed two additional sets of small “branched” ensem-
bles, which were initialized from a single simulation from
the large ensemble in 2032 and 2041 (CTRL-BRN32-SE and
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Figure 3. (a) Retreat of the 148 calibrated marine glaciers during the calibration period (2007-2017), where the area of each circle is
proportional to the catchment size of the glacier it represents. The performance statistics coefficient of determination (R?) and root mean
square error (RMSE) are provided unweighted and weighted by the glacier catchment size. Positive retreat indicates retreat; negative retreat
indicates advance. (b) Zoomed-in version of the grey square box shown in (a). Glaciers discussed in the main text are identified, where PG —
Petermann Glacier, ZI — Zachariae Isstrom, SK — Sermeq Kujalleq, UG — Upernavik Glacier, SG — Steenstrup Glacier, and HG — Humboldt
Glacier. Note that we identify the two main branches of UG: northwestern (UGpw) and central (UG). See Fig. 7a for glacier locations.

CTRL-BRN41-SE, respectively). These small ensembles are
designed to elucidate the role of particular events within the
simulations in generating ensemble spread, as becomes clear
in Sect. 3.

3 Results

The aim of this study is to investigate the role of internal
climate variability in driving mass change from the GrIS
in the future. As a point of comparison, we run two de-
terministic simulations (CTRL-DET and WARM-DET) ap-
plying the mean climate forcing for the CTRL and WARM
scenarios but omitting temporal variability in climate forc-
ing. Figure 4a shows the evolution of ice mass for these two
simulations as dashed dark blue and dark red lines, respec-
tively. The first 30 years of ice sheet evolution in both deter-
ministic simulations is very similar, indicating that the early
evolution is likely driven by a combination of the ice sheet
state in 2018 and the pre-2018 mean climate forcing. Dur-
ing these 30 years of similar evolution, there are two notable
sub-decadal periods of rapid ice mass loss common to both
deterministic simulations (and all other simulations in this
study, as discussed in the next sections). These rapid ice loss
events are associated with the rapid retreats of Petermann
Glacier (PG) in the 2030s and Zachariae Isstrom (ZI) in the
2040s. The loss of floating ice at PG in the first 15 years of
the simulation triggers a rapid retreat over a relatively flat
bed, until the calving front reaches a region of prograde bed
topography. The simulated evolution of ZI starting in 2018
is the ongoing response to the complete loss of floating ice
between 2004 and 2012 (Khan et al., 2022). The subsequent
calving front retreat proceeds over several wide bed bumps
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until the frontal geometry adjusts to a more gradually sloped
configuration. Over the course of the deterministic simula-
tions, 50 % and 80 % of all marine-terminating glaciers re-
treat by more than 1km in the CTRL and WARM deter-
ministic simulations, respectively. However, slower retreat of
smaller glaciers contributes less to the overall ice sheet mass
loss rate compared to the cases of PG and ZI.

After ~ 2050, the two deterministic simulations diverge.
Over the remaining 150 years of the simulation, the CTRL
climate forcing causes recovery of approximately half of the
ice sheet mass loss from the PG and ZI retreats. In contrast,
the WARM deterministic simulation continues to lose mass
at a rapid and regular pace, mostly driven by increasingly
negative SMB across the ice sheet. The CTRL deterministic
simulation contributes to 6.0 cm of sea level rise equivalent in
2100, which reduces to 3.1 cm by the end of the simulation in
2203. Ice loss from the WARM deterministic simulation con-
tributes to an equivalent of 11.5 cm of sea level rise in 2100
and 25.4cm by the end of the simulation in 2203. Though
these simulations are not intended as projections, they do
fall well within the general range of other GrIS projections
(Goelzer et al., 2020), as discussed in more detail in Sect. 4.

3.1 Control large ensemble (CTRL-LE)

The control large ensemble with pre-2000 climate conditions
(CTRL-LE hereafter) includes realistic internal climate forc-
ing variability, represented as stochastic temporal variability
in SMB, runoff, and TF in 100 ensemble members. In Fig. 4a,
we show the ice mass evolution of all members of CTRL-LE.
The main features of the ice mass evolution in the determin-
istic control run (rapid retreat of PG and ZI and gradual re-
covery after 2050) occur in all members of CTRL-LE. By
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Table 1. List of ensembles of model experiments discussed in this study, with details on ensemble differences. In the column “Variability
included”, “All” refers to SMB, runoff, TF, and the correlation between these three variables across Greenland catchments.

Ensemble name Members Mean forcing  Variability included  Start year
CTRL-DET 1 Pre-2000 None 2018
WARM-DET 1 RCP8.5 None 2018
CTRL-LE 100  Pre-2000 All 2018
WARM-LE 100 RCP8.5 All 2018
CTRL-OnlySMB-SE 30  Pre-2000 SMB 2018
CTRL-OnlyOCN-SE 30 Pre-2000 TF 2018
CTRL-NoCOV-SE 30  Pre-2000 Uncorrelated 2018
WARM-OnlySMB-SE 30 RCP8.5 SMB 2018
WARM-OnlyOCN-SE 30 RCP8.5 TF 2018
WARM-NoCOV-SE 30 RCP8.5 Uncorrelated 2018
WARM-STN-SE 30 RCP8.5 Stationary 2018
CTRL-BRN32-SE 30 Pre-2000 All 2032
CTRL-BRN41-SE 30  Pre-2000 All 2041
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Figure 4. Ice mass evolution in GrISLENS large ensembles. (a) Ice mass change for all ensemble members (colored lines) and deterministic
runs (dashed darker lines). (b) Anomaly of ensemble members with respect to their corresponding deterministic run. (¢) Ensemble standard
deviation (o) over time. (d) Ensemble standard deviation relative to the ensemble absolute mean mass change. Blue lines and shading are
CTRL-LE, and red lines and shading are WARM-LE. In (b), the shading shows the 5 % to 95 % range of the ensemble at any time step, and
the lines show the 5 % members with the lowest and largest ice mass at the final time step. On the right y axes, mm SLE denotes millimeters
of sea level rise equivalent.
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2203, the mean ensemble ice loss is 4 % greater than in the
deterministic simulation. This difference is just 1 standard
deviation of the ensemble final mass change from the ensem-
ble median, and 17 members have less ice loss than the deter-
ministic run. Thus, while this difference from the determin-
istic run may be suggestive of potential noise-induced drift
in the stochastic ensemble (Tsai et al., 2017; Hoffman et al.,
2019; Robel et al., 2024), it is not large enough to be statisti-
cally significant (i.e., differences of this magnitude or larger
occur by chance in 17 % of ensemble members). We disen-
tangle the mechanisms of this drift more fully in Sect. 3.3
with comparison to small-ensemble experiments.

Figure 4b shows the ice mass evolution of each member
as an anomaly with respect to the deterministic run. It is
clear that most of the CTRL-LE ice mass anomalies are nega-
tive, confirming the 4 % larger mass loss from the CTRL-LE
ensemble mean compared to its corresponding deterministic
run. Another feature apparent in Fig. 4b is that the members
at the lowest and highest ends of the ensemble mass loss at
the final time step (lines) mostly exhibit low-end and high-
end ice mass anomalies throughout the simulation. That is,
their ice mass deviation from the ensemble mean is caused
by climatic perturbations early in the simulation that pro-
duce a response which persists and continues growing over
the simulation period. This persistence is characteristic of
dynamical systems involving long-response timescales and
positive feedback processes. In our simulations, this includes
the SMB—elevation feedback and the dynamic thinning prop-
agating upstream following marine glacier retreat.

Figure 4c shows the standard deviation between ensem-
ble members of CTRL-LE (blue line), hereafter referred to
as “ensemble spread”. The CTRL-LE spread increases until
2150, before leveling off. The ensemble spread temporarily
increases by 25 % for the rapid retreat of PG and by almost
300 % during the rapid retreat of ZI. In both cases, the en-
semble spread quickly returns to the trajectory of gradual in-
crease once retreat has occurred in all ensemble members.
At the end of the simulation period, the ensemble spread
amounts to 1.3 mm of equivalent uncertainty in sea level con-
tribution and 2.5 mm uncertainty at its peak during the retreat
of ZI. To put this ensemble spread in context, in Fig. 4d we
also show the ratio of the ensemble spread to the ensemble
mean ice loss. This ratio represents the relative importance of
uncertainty through the simulation. We note that the denomi-
nator in this ratio starts near zero and so should be interpreted
with caution, though it does help us to understand the rela-
tive importance of ensemble spread as compared to ensem-
ble mean change. Over the first 20 years of the simulation
period, ensemble spread accounts for 10 %—-300 % of the en-
semble mean mass loss. Once ZI and PG retreat, the ensem-
ble spread never exceeds 5 % of the mean ice loss. However,
this relative uncertainty grows steadily from 2075 as a re-
sult of the ice mass recovery of the ensemble mean (Fig. 4a).
These results indicate that in the near future (decades), cli-
mate variability plays an important role in the progress of
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Greenland ice mass loss. Once the total mass loss ramps up,
climate variability is a less important source of uncertainty
on the ice sheet scale compared to the total ice loss and sce-
nario uncertainty (i.e., the difference between CTRL-LE and
WARM-LE, as seen in Fig. 4a).

Figure 5 shows the mean (panel a) and spread (panel c)
of terminus retreat at all marine-terminating glaciers where
calving and melt forcing occur in CTRL-LE. The retreat of
some glaciers is highly uncertain, with some ensemble mem-
bers retreating tens of kilometers and others not at all. For
most glaciers, the ensemble spread in Fig. Sc—d remains ap-
proximately constant after 2050, indicating that most of the
uncertainty stems from the internal climate variability caus-
ing retreats in some ensemble members early in the sim-
ulations. Figure 6 shows flowline thickness profiles for all
CTRL-LE ensemble members at selected glaciers and times.
PG (Fig. 6a) and ZI (Fig. 6b) experience the most uncer-
tainty in the simulated terminus position in the midst of
rapid retreat, with ensemble members differing by up to
10km, before converging following the main period of re-
treat. In contrast, at other glaciers, including the Upernavik
and Steenstrup glaciers (Fig. 6c, d), the extent of retreat de-
pends strongly on the details of climate variability. The result
is that individual ensemble members undergo retreats that
differ by up to 10km in extent, and this difference can per-
sist until the end of the simulation period. For these glaciers,
there are a discrete number of positions where the front per-
sists in different ensemble members, punctuated by rapid re-
treats on sub-decadal timescales between positions. This is
a known behavior of marine-terminating glaciers retreating
over bed topography with many local peaks of varying height
(Robel et al., 2022). PG and ZI are among the largest catch-
ments in Greenland, so when retreats occur over a sufficiently
short time period (less than a decade) and across all ensem-
ble members, small differences in the timing of retreat on-
set cause the large increase in total ice sheet mass ensemble
spread (Fig. 4c). Other glaciers are either sufficiently small
or retreat relatively slowly, and so even when there are per-
sistent and large differences in the extent of retreat (e.g., at
Upernavik and Steenstrup), they have a limited impact on the
ensemble mean or spread.

Thickness changes in CTRL-LE are mapped in Fig. 7, with
the top row showing ensemble mean thickness changes in
2050, 2100, and 2203; the middle row the difference with
respect to the deterministic simulation; and the bottom row
the corresponding ensemble spread. Before 2100, a dynamic
thinning of hundreds of meters occurs far upstream of retreat-
ing termini at PG, ZI, and other marine-terminating glaciers
in western and southeastern Greenland. Gradual thickening
of tens of meters occurs across the ice sheet interior, mainly
after 2100. This progression largely explains the ice mass
evolution in Fig. 4a, with dynamic thinning driving most ice
loss early in the simulation and positive SMB in the ice sheet
interior causing thickening later.
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Figure 5. Cumulative retreat of terminus position since the transient simulation start date (2018) for each marine-terminating glacier in
Greenland: a retreat of x km in year y indicates that the terminus has retreated by x km between 2018 and y. Glaciers are grouped by regions
as follows: NO — north, NE — northeast, SE — southeast, SW — southwest, CW — central west, and NW — northwest (see map on the right). (a—
b) Ensemble mean of retreat extent [km] in (a) CTRL-LE and (b) WARM-LE. Red indicates retreat; blue indicates advance. (c—d) Ensemble
spread of retreat extent [km] in (¢) CTRL-LE and (d) WARM-LE. In (a) and (b), the grey hatching denotes non-significant retreat/advance,
where significance is evaluated as agreement on the sign of retreat between 95 % of ensemble members. Note the logarithmic color bar in (c)
and (d). The individual glaciers identified on the right y axes are PG — Petermann Glacier, ZI — Zachariae Isstrom, SK — Sermeq Kujalleq,
UG - Upernavik Glacier, SG — Steenstrup Glacier, and HG — Humboldt Glacier (see locations on the map on the right).
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Figure 6. Along-flow profiles of ensemble near-terminus ice thickness for four glaciers at various points during the simulation period in
CTRL-LE (blue profiles) and CTRL-Det (grey profiles). (a) Petermann Glacier (year 2034). (b) Zachariae Isstrom (year 2042). (¢) Upernavik
Glacier (year 2203). (d) Steenstrup Glacier (year 2203). All 100 ensemble members of CTRL-LE are included in the plots, and each profile
corresponds to a single ensemble member. See Fig. 7a for glacier locations.
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During the retreats of PG and ZI, slight differences in re-
treat timing between ensemble members cause tens to hun-
dreds of meters of uncertainty in the upstream-propagating
wave of dynamic thinning (e.g., at ZI in Fig. 7g), which
quickly dissipates once all ensemble members have retreated
(Fig. 7h, i). In contrast, at glaciers where uncertainty in
retreat extent persists (e.g., Upernavik Glacier), there re-
mains hundreds of meters of uncertainty in dynamic thin-
ning, which gradually spreads upstream and into adjacent
catchments over the simulation period (Fig. 7h, 1). SK does
not begin to undergo retreat until after 2050 in CTRL-LE,
though differences among ensemble members in retreat on-
set timing produce large uncertainties in thinning during
the middle part of the simulation period (2070-2150; see
Fig. 7h). By the end of the simulation, SK has retreated in
all ensemble members, and thinning uncertainty has largely
dissipated (Fig. 7i). Across glacier catchments in the south-
ern half of Greenland, SMB variability drives gradually in-
creasing uncertainties in thickness evolution over large ar-
eas; it generally remains an order of magnitude lower than
that of retreating glaciers in western Greenland (Fig. 7g, h,
i). The relative importance of ocean-driven dynamic thinning
and SMB variability is discussed in further detail in Sect. 3.3.
Differences in ice thickness between the CTRL-LE mean and
the deterministic simulation are mostly small (Fig. 7d, e, f).
The most pronounced differences appear for outlet glaciers in
western and southeastern Greenland. The stronger ice loss in
CTRL-LE than in the deterministic simulation (see Fig. 4a)
can mostly be attributed to localized enhanced thinning at
two large outlet glaciers (Fig.7f).

3.2 RCPS8.5 large ensemble (WARM-LE)

The RCPS.5 large ensemble (hereafter WARM-LE) is initial-
ized identically to CTRL-LE, but the statistics of the climate
forcing evolve over time, leading to increasingly intense sur-
face melt and ocean thermal forcing over the course of the
simulation period. WARM-LE is meant to be a point of com-
parison with CTRL-LE. First, we determine how the ice sheet
responds differently to changes in the mean climate as com-
pared to internal climate variability. Second, we analyze how
the response to internal variability may differ under differ-
ent background climatic states. We note briefly that RCP8.5
is a high-end-member emissions scenario, and the following
results should be interpreted as a model experiment, not a
projection.

The evolution of the WARM-LE ice mass (Fig. 4, red
lines) is qualitatively similar to that of the deterministic sim-
ulation (dashed dark red line). At the end of the simulation
period, the spread in WARM-LE ice mass loss accounts for
2.4mm of equivalent uncertainty in sea level rise as com-
pared to the ensemble mean ice mass loss equivalent to
255 mm sea level rise. Prior to 2050, the WARM-LE mean
and spread (Fig. 4a, c) track very closely to CTRL-LE, as the
ice sheet response is dominated by retreats of PG and ZI. The
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two spikes in ensemble spread associated with these retreats
occur in the same model years in CTRL-LE and WARM-LE.
These similarities confirm that the behavior early in simu-
lations is largely caused by a combination of the initial ice
sheet state and the ice sheet disequilibrium with the climate
at the beginning of the simulation. Evolving mean climate
forcing (Fig. F1) appears to play little role in these first few
decades of the ensemble. Prior to the retreat of PG, the en-
semble mean ice mass loss is sufficiently higher in WARM-
LE than in CTRL-LE such that the ratio of ensemble spread
to mean ice loss (Fig. 4d) is generally lower, though still sub-
stantial (10 %—30 %) in the first ~ 20 years of the simulation
period. This effect is also evident on longer timescales, where
all ensemble members have a common ice sheet response
to increasingly intense surface melt and ocean thermal forc-
ing that dominates differences between ensemble members
caused by internal climate variability. Finally, Fig. 4b shows
the anomaly in each WARM-LE member with respect to the
deterministic WARM run. Similarly to CTRL-LE, there is a
pronounced persistence of early stochastic perturbations to
the ice sheet mass throughout the entire simulation period.
As aresult, the members with the most extreme final ice mass
totals are generally characterized by trajectories being at the
lower or upper end of the ensemble already in the first few
decades or even years (Fig. 4b).

Figure 8 shows the evolution of ensemble mean and spread
in ice thickness for WARM-LE, and Fig. 9 shows the differ-
ence between WARM-LE and CTRL-LE in terms of ensem-
ble mean and spread in thickness at the end of the simula-
tion period. In the first few decades of the simulation pe-
riod, several marine-terminating glaciers in western Green-
land undergo rapid retreat and dynamic thinning (Fig. 8a and
glaciers in the CW and NW regions in Fig. 5¢). One major
difference from CTRL-LE is that these retreats are more uni-
form across ensemble members (compare glaciers in the CW
and NW regions in Fig. 5b and d). This results in persistently
less ensemble spread in near-margin thinning in these west-
ern Greenland catchments (Fig. 9b). In contrast, throughout
the simulation period, there is greater ensemble spread in the
catchment-wide thickness across most of the Greenland inte-
rior. Such a catchment-wide response is caused by variabil-
ity in SMB. An increase in the amplitude of SMB variability
(discussed in more detail in the next section) is already ap-
parent early in the simulation period and continues to drive
growing spread in thickness until the end of the simulation
period. The greater areal extent of this SMB-driven increase
in ensemble spread drives the overall greater spread in ice
mass in the later part of the WARM-LE simulation period
(Fig. 4b).

After 2050, ice sheet evolution in WARM-LE departs
more strongly from CTRL-LE (compare Figs. 8b, c and 7b,
¢, and see Fig. 9a). At this point in the simulation period,
the mean climate forcing has strongly diverged between the
two large ensembles (Fig. F1), and the ice sheet has had
sufficient time to respond to the different climate forcing.
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Figure 7. Ice thickness (H) in CTRL-LE. Top row: ensemble mean change in H between 2018 and (a) 2050, (b) 2100, and (c) 2203. Middle
row: difference in H between ensemble mean and the deterministic simulation in (d) 2050, (e) 2100, and (f) 2203. Bottom row: ensemble
spread (o (H)) in (g) 2050, (h) 2100, and (i) 2203. Note the different color scales in (a)—(c) and (d)—(f), as well as the logarithmic color scale
in (g)—(i). Color scales are identical to those in Fig. 8. Glacier locations are shown in (a) for PG — Petermann Glacier, ZI — Zachariae Isstrom,
SK — Sermeq Kujalleq, UG — Upernavik Glacier, SG — Steenstrup Glacier, and HG — Humboldt Glacier.

SMB has decreased enough to cause thinning across almost
the entire ice sheet interior except for some land-terminating
glacier catchments in far southern Greenland (Fig. 8b, c).
Marine-terminating glaciers across the whole ice sheet ex-
perience more extensive retreat and more intense dynamic
thinning, particularly between 2100-2200 (Fig. 8c). WARM-
LE spread in ice thickness is higher than CTRL-LE spread
across most of the ice margins (Fig. 9b), indicating that re-
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treat and the resultant dynamic thinning are variable across
ensemble members, driven by variability in mean surface
melt in the ablation zone and ocean melt at calving fronts.
In all WARM-LE simulations, SK undergoes an early retreat
that does not occur until later in CTRL-LE. However, at the
end of our simulation period, the strong ocean forcing has
driven a second retreat at SK, which drives an increase in en-
semble spread. It may be that given further simulation time,
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Figure 8. Ice thickness (H) in WARM-LE. Top row: ensemble mean change in H between 2017 and (a) 2050, (b) 2100, and (¢) 2203. Middle
row: difference in H between ensemble mean and the deterministic simulation in (d) 2050, (e) 2100, and (f) 2203. Bottom row: ensemble
spread (o (H)) in (g) 2050, (h) 2100, and (i) 2203. Note the different color scales in (a)—(c) and (d)—(f), as well as the logarithmic color scale

in (g)—(i). Color scales are identical to those in Fig. 7.

this could grow to become a substantial source of ensemble
spread. WARM-LE spread in ice thickness is also higher than
CTRL-LE across the ice sheet interior, though to a lesser ex-
tent than at the margins, likely resulting from the increasing
amplitude of SMB variability through the simulation period.
Finally, we note that for WARM-LE, the differences between
the ensemble mean and the corresponding deterministic sim-
ulation are also small. However, the differences in 2203 at
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outlet glaciers are notably smaller than those for CTRL-LE
(compare Figs. 8f and 7f). In contrast, differences are more
extensive across the ice sheet interior but still of low magni-
tude (< 5 m, Fig. 8f).

3.3 Small ensembles

Our explicitly stochastic approach to representing internal
variability in climate forcing in ice sheet simulations allows
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Figure 9. Difference in ice thickness change in 2203 between CTRL-LE and WARM-LE in terms of (a) ensemble mean (pink is greater
ensemble mean thinning in WARM-LE) and (b) ensemble spread (o (H), blue is more ensemble spread in WARM-LE). Note the pseudo-
logarithmic color scale in (b). Hatching denotes non-significant differences, evaluated with a 300-sample bootstrap procedure and controlled

for a false discovery rate of 0.05 (see Appendix H).

us to systemically remove or modify different sources of
climate variability in our simulations. To determine which
aspects of climate variability are the primary contributors
to the leading-order statistical moments and certain behav-
iors in the large ensembles discussed in the prior sections,
we analyze a series of “small” ensembles (described in
Sect. 2.5.3). For both CTRL and WARM climate forcings,
this includes OnlySMB-SE, OnlyOCN-SE, and NoCOV-SE.
In addition, the small ensembles include WARM-STN-SE,
i.e., the WARM scenario with a fixed covariance matrix, and
the two branched ensembles, CTRL-BRN32-SE and CTRL-
BRN41-SE, which branch from the CTRL scenario in 2032
and 2041. In light of Fig. 4, the purpose of the latter two
small ensembles is clear: by branching the ensemble in these
years, we eliminate all pre-existing ensemble spread in order
to understand the role of the retreats of PG (starting in 2033
in most LE members) and ZI (starting in 2042 in most LE
members) in generating ensemble spread.

3.3.1 Control small ensembles

In Fig. 10a, we show the distribution of ice mass change
across the large and small ensembles with CTRL climate
forcing. In general, we find that all aspects of variability con-
tribute somewhat to the large-ensemble spread, including the
SMB, ocean, and covariance structure of the climate forc-
ing. Omitting covariance between SMB and ocean thermal
forcing variability and between catchments (CTRL-NoCOV-
SE; dark red data in Fig. 10a) reduces ensemble spread by
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44 %. Applying SMB variability only (CTRL-OnlySMB-SE;
orange data in Fig. 10a) reduces ensemble spread by 36 %
and shifts the ensemble towards less ice mass loss, with
the mean and median being approximately equivalent to the
75th percentile in CTRL-LE. Applying ocean variability only
(CTRL-OnlyOCN-SE; blue data in Fig. 10a) reduces ensem-
ble spread by 61 % without a substantial shift in the mean.
Figure 10a also shows that at the end of the simulation pe-
riod, CTRL-LE (green data) is skewed towards more mass
loss (see also Fig. E1 in Appendix E). This is indicated vi-
sually by a “long tail” of five ensemble members, in which
there is much more mass loss than for the equivalent ensem-
ble members on the other end of the distribution (less mass
loss). While prior studies (Robel et al., 2019) have indicated
that such high-end skew in simulations of mass loss may oc-
cur during periods of rapid retreat, there are no ongoing rapid
retreats of large catchments in CTRL-LE at the end of the
simulation period. The time-dependent calculation of skew-
ness (Fig. E1 in Appendix E) indicates that this persistent
skewness only arises in the last 50 years of the simulation pe-
riod. Since none of the small ensembles have such skew, we
can conclude that correlation between the ocean and SMB
variability is the cause of this skew, as this is the only fac-
tor omitted from all three ensembles (CTRL-NoOCN-SE and
CTRL-NoSMB-SE implicitly omit these correlations by ze-
roing out variability in one or another type of variability).
However, our small ensembles are too small to robustly at-
tribute skewness on the basis of just a few “outlier” ensemble
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simulations; thus we leave this possibility as a hypothesis to
be further evaluated in future work.

These small-ensemble results indicate that over the sim-
ulation period, the largest drivers of spread in the large en-
semble are SMB variability and the spatial covariance be-
tween different climate forcing variables and glacier catch-
ments. In Fig. 11a, we show the difference in ensemble
spread in ice thickness between CTRL-OnlyOCN-SE and
CTRL-OnlySMB-SE for 2203. SMB variability drives most
variability in ice thickness over the Greenland interior. This
SMB-driven thickness variability is higher by up to 10 times
in the south compared to SMB-driven thickness variability in
central and northern Greenland. In comparison, ocean vari-
ability drives an even higher amplitude of thickness variabil-
ity over small regions encompassing the dynamic thinning
wave from retreat of glaciers, mostly in western Greenland
(e.g., Upernavik and SK).

In quantitative terms, we find that less than 10 % of the
area of the GrIS is dominated by ocean-driven thickness
variability, with thickness variability in the rest of the ice
sheet being driven by SMB. However, the higher intensity
of ocean-driven thickness variability in these small regions
means that ocean variability alone (i.e., CTRL-OnlyOCN-
SE) drives 40 % of the mass balance variability for all of
Greenland, as simulated in the large ensemble (CTRL-LE).

If the ensemble mean of the ice sheet mass loss were
driven entirely by the climate forcing scenario (i.e., the dif-
ference between CTRL and WARM), then we should ex-
pect no statistically significant difference between the small-
ensemble means of CTRL and the CTRL-LE mean, since
only the variability in climate forcing is modified in the small
ensembles. We use Welch’s ¢ test with unequal variances and
sample sizes (Welch, 1947) to determine whether the mean
ice mass loss of the small ensembles is significantly differ-
ent from that of the CTRL-LE mean. Indeed, there is no sig-
nificant difference between CTRL-OnlyOCN-SE and CTRL-
NoCOV-SE (p > 0.5). However, CTRL-OnlySMB-SE has a
shift in the ensemble mean ice loss that is statistically sig-
nificant (p < 1073), as excluding ocean forcing variability
decreases total ice loss. This difference strengthens the hy-
pothesis of noise-induced drift in CTRL-LE compared to the
deterministic run (4 % greater mass loss; see Fig. 4a, b), since
the deterministic run also lacks ocean variability. This result
is consistent with prior work finding that ocean variability
drives real drift in the direction of retreat in ice sheet evo-
lution (Verjans et al., 2022; Robel et al., 2024). Since ocean
variability drives uncertainty in the onset time of glacier re-
treat over peaks in bed topography, the model drift here is
thus probably entirely caused by noise-induced bifurcations,
as described previously by Robel et al. (2024).

3.3.2 Branched small ensembles

As discussed in previous sections, the rapid retreats of PG
and ZI play an important role in generating ensemble spread
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during the period of the retreats. The branched small en-
sembles (CTRL-BRN32-SE and CTRL-BRN41-SE) allow
us to understand the sources and persistence of this retreat-
mediated uncertainty. Figure 12 shows the ensemble spread
of total ice mass over the simulation period for CTRL-LE
(green line), CTRL-BRN32-SE (dark red line), and CTRL-
BRN41-SE (orange line). CTRL-BRN32-SE shows a simi-
lar increase in ensemble spread during the retreat of PG as
compared to CTRL-LE, indicating that most of the ensemble
spread generated at PG is related to climate forcing variabil-
ity during the PG retreat, driving differences in retreat rates.
In contrast, when there is less ensemble spread at the onset
of ZI retreat, there are much smaller increases in ensemble
spread during the ZI retreat. This indicates the importance
of retreat onset timing at ZI for determining how much the
ensemble spread increases during the retreat. Finally, despite
substantial differences in the magnitude of ensemble spread
increases during large retreats in the branched small ensem-
bles, the final differences in ensemble spread are similar in
magnitude to the differences existing before the retreats sim-
ply by starting simulations at a new time. Thus, we conclude
that while ensemble spread increases substantially during re-
treats, this spread does not persist if all ensemble members
ultimately undergo the same retreat. This contrasts with the
ensemble behavior for glaciers such as Upernavik and Steen-
strup, where some members of CTRL-LE and WARM-LE
undergo retreat, while others do not. In such cases, uncer-
tainty is likely to be persistent.

3.3.3 RCP8.5 small ensembles

By the end of the simulation period, WARM-LE has about
twice as much ensemble spread as CTRL-LE, though
the drivers of this spread are not qualitatively differ-
ent (Fig. 10b). When only SMB variability is imposed
(OnlySMB-SE, orange data in Fig. 10b), there is no signif-
icant change in the ensemble spread (p > 0.4 in Levene’s
test, Levene, 1960). However, omitting spatial covariance in
SMB between catchments (NoCOV-SE, dark red in Fig. 10b)
or SMB variability entirely (OnlyOCN-SE, blue in Fig. 10b)
causes ensemble spread to be significantly reduced (54 % and
81 % reductions, respectively). In WARM-LE, the amplitude
of climate forcing variability changes over the simulation pe-
riod, and we change the prescribed covariance to capture this
non-stationarity (e.g., Fig. 1). This is particularly relevant
to SMB variability, which is amplified strongly in the AWI-
ESM climate model response to the RCP8.5 scenario. As a
result, Fig. 11b shows that SMB-driven variability is more
pronounced across Greenland than in the CTRL forcing sce-
nario and that areas dominated by ocean-driven variability
are more restricted. In WARM-STN-SE, we omit the increas-
ing amplitude of variability in SMB, as well as all other cli-
matic forcings, by keeping the forcing covariance constant
in 2000-2050 values over the simulation period. As a re-
sult, the ensemble spread in WARM-STN-SE is reduced by
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Figure 10. Boxplots showing distribution of ice mass change in the year 2203 in all ensemble members for the (a) CTRL and (b) WARM
climate forcings. Shown in (a) are CTRL-LE (green), CTRL-NoCOV-SE (dark red), CTRL-OnlySMB-SE (orange), and CTRL-OnlyOCN-
SE (blue). Shown in (b) are WARM-LE (green), WARM-NoCOV-SE (dark red), WARM-OnlySMB-SE (orange), WARM-OnlyOCN-SE
(blue), and WARM-STN-SE (violet). Horizontal lines indicate the ensemble median, diamonds ensemble mean, boxes inter-quartile (25 %-—
75 %) range, whiskers 5 %—95 % range, and circles individual outliers. The dashed horizontal grey lines show the ice mass loss in the
corresponding deterministic simulations. On the right y axis, mm SLE denotes millimeters of sea level rise equivalent. Note that the span of

the y axis in (a) is exactly half of that in (b).

33 % (violet data in Fig. 10b). This difference is a large frac-
tion of the inter-ensemble spread between WARM-LE and
CTRL-LE (33 % versus 46 %). To investigate this contribu-
tion, Fig. 13 shows the ratio of the interannual SMB variabil-
ity from dEBM in the last 3 decades of the simulation period
to that in the first 3 decades. In most of eastern Greenland
and some catchments in central western Greenland, the am-
plitude of SMB variability is 2—-8 times higher in the final
decades of the simulation period as compared to the starting
decades. No catchment shows any appreciable decrease in
SMB variability over this period. The WARM small ensem-
bles thus tell a consistent story: in a strongly warming cli-
mate, (1) the full-ensemble spread can be explained by SMB
variability alone, and (2) almost 1/3 of ensemble spread in
the year 2203 can be attributed to the warming-driven in-
crease in the amplitude of SMB variability over the next 2
centuries.

If there is any drift in the ensemble mean ice loss in
WARM-LE, it is not statistically distinguishable from the
larger envelope of ensemble spread in this ensemble at the
end of the simulation period. In addition, none of the small-
ensemble results suggest that a particular variability compo-
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nent causes noise-induced drift, in contrast to the CTRL forc-
ing case (Fig. 10). Furthermore, though there are some outlier
ensemble members in WARM-LE, their number is limited,
making it difficult to draw conclusions about skewness of ice
mass without a larger ensemble (which would be computa-
tionally challenging to run within the context of this study).

4 Discussion

The main conclusion of this study is that in the first 2 decades
of simulations, climate variability plays an important role in
generating uncertainty in the evolution of total ice sheet mass
and contribution to sea level rise. Beyond this initial period,
internal climate variability quickly diminishes in importance
at the ice sheet scale, particularly when compared to uncer-
tainty in future emissions scenarios. This conclusion is de-
rived from a large ice sheet model ensemble constituting the
most advanced quantification of the role of climate variabil-
ity in future GrIS evolution. The modeling experiments de-
scribed in this study are unprecedented in terms of the res-
olution of ice sheet model simulations (< 1km at calving
fronts), the inclusion of dynamic calving, the size of ensem-
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Figure 11. Difference between ensemble spread in ice thickness (o (H)) in 2203 in OnlyOCN-SE versus OnlySMB-SE for (a) CTRL
climate forcing and (b) WARM climate forcing. Greater spread in OnlyOCN-SE is indicated by blue, and greater spread in OnlySMB-SE
is indicated by orange. Note the pseudo-logarithmic color scale. Hatching denotes non-significant differences, evaluated with a 300-sample
bootstrap procedure and controlled for a false discovery rate of 0.05 (see Appendix H).
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Figure 12. Ensemble spread (o) in total ice sheet mass change
for CTRL-LE (green), CTRL-BRN32-SE (dark red), and CTRL-
BRN41-SE (orange). On the right y axis, mm SLE denotes mil-
limeters of sea level rise equivalent.

bles, and the correction of stochastic climate variability to
match the statistics of the observations.

Our findings are consistent with broader climate model-
ing results on key variables, such as global and regional
trends in temperature and precipitation, where internal vari-
ability is a major component of uncertainty in the near future
(Lehner et al., 2020). The uncertainty in future GrIS evolu-
tion is largely driven by SMB, spatial correlations in SMB,
and the increasing amplitude of variability in SMB. Within
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individual glacier catchments and time periods of the simu-
lation, uncertainties in mass loss can be considerably greater
due to ocean variability driving uncertainty in the timing of
rapid glacier retreats. This is particularly notable in western
Greenland, where individual ensemble members exhibit re-
treats differing in timing by decades, for example at the SK,
Upernavik, and Steenstrup glaciers. This future sensitivity
of glaciers in western Greenland to ocean forcing is consis-
tent with a similar sensitivity of recent (1979-2018) glacier
retreat to ocean variability in central western and southern
Greenland, as shown by Slater and Straneo (2022). They ar-
gue that southern and central western Greenland is directly
exposed to North Atlantic oceanic variability. Indeed, the
amplitudes of both seasonal and interannual variability in our
stochastic parameterization of the oceanic thermal forcing,
derived based on a high-resolution ocean reanalysis product
(Nguyen et al., 2012), are the highest in southern and western
Greenland (Verjans et al., 2023).

4.1 Comparison to prior large-ensemble studies

A previous study by Tsai et al. (2017) found that ensemble
mean ice sheet response to the coupled CESM large ensem-
ble is about 12 cm sea level rise equivalent in 2100, which
is very similar to our simulated WARM-LE ice loss. How-
ever, they find an ensemble spread at this time of ~ 22 mm,
which is approximately 1 order of magnitude more spread
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Figure 13. Ratio of amplitude of catchment-averaged SMB inter-
annual variability in dEBM under the RCP8.5 scenario between the
last 3 and first 3 decades of our simulations (2174-2203 to 2018
2047). Note that this time-evolving SMB field of dEBM is used to
constrain the SMB statistics of the WARM climate forcing.

than our value of 1.3 mm in 2100 in WARM-LE. The study
of Tsai et al. (2017) is the closest point of comparison for
GrISLENS. Their study used two large ensembles of a global
climate model to force an ice sheet model until 2100 under
an RCP8.5 scenario in order to quantify the role of inter-
nal climate variability in driving uncertainty in future Green-
land ice loss. The mean climate forcing was bias corrected to
modern observations, but the climate variability was purely
as predicted by their global climate model, in contrast to our
methods for generating climate variability, which are cor-
rected to observed variability (Verjans et al., 2023; Ultee
et al., 2024). Additionally, the computational constraints of
running climate model large ensembles requires a coarse hor-
izontal resolution: 3.75° for the ocean—atmosphere coupled
LE used by Tsai et al. (2017) and 1° for the model in Tsai
et al. (2017) or about 3 and 10 grid points across Greenland,
respectively. Similarly, the ice sheet model for their study
was run at 20 km resolution, which is too coarse to explic-
itly resolve most Greenland outlet glaciers. Their ice sheet
model was also initialized at a steady state in 2000, which
does not capture the strong Greenland mass loss trend, esti-
mated to have started earlier in the 20th century (Mouginot
etal., 2019).

Both GrISLENS and Tsai et al. (2017) attribute most of
the simulated ensemble spread to SMB variability. Though
it is challenging to definitively attribute the cause of these
starkly different ensemble spreads, the most likely explana-
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tion is the coarse resolution of the climate model forcing
in Tsai et al. (2017) (~ 400 km for the coupled LE forcing
compared to 5 km for dEBM; see Sect. 2.2.2). Such a reso-
lution introduces spurious spatial correlation between catch-
ments in SMB, which, as we have shown, plays an impor-
tant role in driving ensemble spread under warming. Indeed,
we find that accounting for realistic inter-catchment correla-
tion in WARM-LE more than doubles the ensemble spread
compared to assuming uncorrelated catchments. It is there-
fore unsurprising that representing SMB over Greenland as
only ~ 10 grid points can cause a further 10-fold increase
in ensemble spread, as this approach assumes almost perfect
correlation across large portions of the entire ice sheet.

Tsai et al. (2017) also find substantial evidence of drift be-
tween simulations forced with and without internal climate
variability, even under strong emissions forcing, which they
attribute to the use of a positive degree day (PDD) scheme
for calculating SMB. This is consistent with recent work,
showing that nonlinearities in PDD schemes (Lauritzen et al.,
2023) or other ice sheet processes (Robel et al., 2024) can
lead to noise-induced drift, particularly in models starting
from a deterministic steady state. We directly generate Gaus-
sian stochastic variability in SMB (as indicated by observa-
tions; Ultee et al., 2024) and start from a more realistic out-
of-balance initial ice sheet state. These factors are consistent
with the absence of statistically significant drift in WARM-
LE.

Aschwanden et al. (2019) provide another useful point of
comparison to GrISLENS. In their study, parameters for ice
flow and forcing parameterizations were perturbed over 500
ensemble members with an ice sheet model of sufficiently
high resolution (1 km) over Greenland to resolve individual
outlet glaciers. They found consistently much greater mass
loss compared to WARM-LE, with a median sea level con-
tribution of 22 cm in 2100 (compared to 11 cm in WARM-
LE) and 103cm in 2200 (compared to 25cm in WARM-
LE). Ensemble spread in Aschwanden et al. (2019) is also
much greater than in WARM-LE, with a standard deviation
of 10cm SLE in 2100 and 50 cm SLE in 2200, about 2 orders
of magnitude greater than the WARM-LE ensemble spread.
Later work to calibrate these ensembles using observations
reduced the median and spread of their ensemble (Aschwan-
den and Brinkerhoff, 2022), but the broader higher sensitivity
and spread compared to WARM-LE remain. Decomposing
the parametric uncertainty quantified in their ensemble using
Sobol indices, they find that in 2100, uncertainty in ice flow
and surface melt parameters contributes the most to uncer-
tainty in total ice sheet mass loss. In 2200 and beyond, uncer-
tainty in the sensitivity of mean atmospheric temperatures to
emissions forcing (i.e., climate sensitivity) dominates uncer-
tainty in total ice sheet mass loss. Consistent with our study,
they find that uncertainty in ocean forcing plays a relatively
minor role in driving uncertainty in total ice sheet mass loss.
We thus conclude that even for a given large-scale climate
forcing, uncertainty in parameters that govern how SMB is
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calculated from large-scale climate models is currently large
enough to substantially exceed uncertainty from variability
in SMB in terms of the resulting influence on total ice sheet
mass loss.

4.2 Comparison to ISMIP6

We find that aleatoric uncertainty due to internal climate vari-
ability is 1-2 orders of magnitude less than structural uncer-
tainty due to ice sheet model differences or uncertainties in
the climate model response to emission forcing as quanti-
fied in the most recent iteration of the Ice Sheet Model Inter-
comparison Project (ISMIP6). ISMIP6 is a community effort
to compare simulations of ice sheet change for Antarctica
(Seroussi et al., 2020) and Greenland (Goelzer et al., 2020).
This is generally considered to be the most comprehensive
estimate of uncertainties in future ice sheet evolution as it
includes differences between ice sheet models and between
climate models. Part of the purpose of our study is to sup-
plement ISMIP6 by designing an ensemble to quantify un-
certainty not captured by the ISMIP6 ensemble. ISMIP6 en-
semble spread across model simulations of the GrIS (keep-
ing climate forcing constant) ranges from 824 mm SLE in
2100. ISMIP6 spread across climate models (keeping the ice
sheet model constant) ranges from 21-37 mm SLE in 2100.
In comparison, in 2100, ensemble spread in WARM-LE is
1.3 mm SLE (or 2.5 and 2.4 mm at the peak of rapid retreats
and the end of the simulation period, respectively). In Fig. 14,
we show the difference in ensemble spread among ice sheet
models in thickness in 2100 for the MIROCS5-RCPS.5 IS-
MIP6 simulations compared to the WARM-LE ensemble.
Across the ice sheet margins, inter-model ensemble spread
is generally 1-2 orders of magnitude greater than ensem-
ble spread in WARM-LE. The only places where ensemble
spread is greater in WARM-LE than in the ISMIP6 ensemble
are in the ice sheet interior, where our methodology sam-
ples internal variability in snowfall, compared to the struc-
tural uncertainty sampled by using different SMB models in
ISMIP6. However, if future iterations of ISMIP require mod-
els to dynamically match historical ice loss transients, this
may sufficiently reduce the spread among ice sheet models
so that it becomes more comparable to aleatoric uncertainty.
The results of this study strongly argue for the value of such
an approach.

In the ISMIP6 protocol, all simulation results are pre-
sented as differences from a ‘“control”, where SMB and
ocean thermal forcing are held constant at 2014 values. In
ISMIP6, ice sheet models demonstrate a diverse range of re-
sponses in this “control” simulation, with most models hav-
ing less than 6 mm SLE mass gain or loss by 2100 and all ice
sheet models simulating between 50 mm SLE mass gain and
15 mm SLE mass loss (with the 50 mm gain model being a
strong outlier) (Goelzer et al., 2020). By comparison, in our
study, CTRL-LE has ~ 50 mm SLE mass loss by 2100. This
difference is the result of our initialization procedure, which

The Cryosphere, 19, 3749-3783, 2025

V. Verjans et al.: GrISLENS: simulating the future of Greenland under climate variability

128

32

8 =
=)
o =
1)

, 39
2=

L 5 s
32

. I =

0 = E

L 3

--0.2

-0.8

Figure 14. Difference between ice thickness spread (o (H)) in 2100
for the ISMIP6 inter-model ensemble forced by MIROCS5-RCP8.5
(Fig. 6b in Goelzer et al., 2020) and ice thickness spread in 2100
for WARM-LE. Blue indicates greater spread for ISMIP6 and pink
for WARM-LE. Note the nonlinear and non-symmetric color bar.
Hatching denotes non-significant differences, evaluated with a 300-
sample bootstrap procedure for WARM-LE only and controlled for
a false discovery rate of 0.05 (see Appendix H).

calibrates the model in order to reproduce the observed mass
loss for the ice sheet between 2007 and 2017 (Fig. 2). While
some ISMIP6 models do reproduce the historical mass loss
trend for Greenland, this transient mass loss trend does not
continue past the initialization of future simulations in 2014.
This is likely due to most ISMIP6 models using a retreat
parameterization whose boundaries would not move under
fixed ocean thermal forcing, in contrast to the moving mar-
gins of our CTRL-LE.

Many ice sheet model projections included in ISMIP6 may
be missing an important contributor to ongoing Greenland
ice loss by not forcing a match to the initial transient of the
GrIS. If the ice mass change in CTRL-LE is subtracted from
WARM-LE, similarly to ISMIP6, the resulting anomalous
mass loss in WARM-LE in 2100 is ~ 70 mm SLE, which
would fall just below the median of the range of model sen-
sitivities in ISMIP6 (40—-138 mm SLE). However, as we have
explained above, this is strongly a function of our initial-
ization scheme producing a strong transient ice loss even in
the control setting, without mean climate change. Without
subtracting control simulations, ice mass loss in WARM-LE
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would fall near the upper end of the range of ISMIP6 model
sensitivities with ~ 120mm SLE. The IPCC handled this
lack of capability by subtracting the control simulation from
ISMIP6 simulations under future forcing and then adding the
current ice sheet mass balance trend. This potential missing
piece of simulated ice sheet mass loss in ISMIP6 has previ-
ously been identified by Aschwanden et al. (2021) and is the
focus of efforts to improve ensemble design in the coming
ISMIP7 effort.

Our initialization utilizes state-of-the-art methods (Choi
et al., 2021) to match recent trends at both the ice sheet
and the glacier scales. This procedure relies on the calibra-
tion of a stress threshold parameter in the von Mises calv-
ing law (Morlighem et al., 2016). However, since this is per-
formed for each individual marine-terminating glacier, the
number of degrees of freedom involved is as large as the
number of glaciers, rendering our calibration prone to over-
fitting. Furthermore, given that marine glaciers have response
timescales of the order of decades to millennia (Robel et al.,
2018), matching 11-year observed trends is no guarantee of
realistic model behavior. As discussed in Sect. 2.4, the 2007
ice sheet state is derived from a mass-conserving data as-
similation scheme that integrates data that are not exactly
co-located in time, producing inaccuracies which likely tran-
siently adjust during the calibration window and potentially
beyond 2018 into the ensemble simulations. Additionally, the
exact timing of simulated rapid retreats at PG, ZI, and SK de-
pends on the calibrated values of parameters used in the von
Mises calving parameterization. We recognize that all calv-
ing parameterizations currently used in models have known
issues when extrapolated across space and time (Amaral
et al., 2020). We thus urge caution in interpreting the timing
and extent of dramatic retreats of PG, ZI, and SK as real-
istic projections; instead, we suggest that these may reflect
limitations of current tuning practices in ice sheet modeling.
However, we emphasize that the aim of this study is not to
project exact ice sheet evolution into the future but rather to
quantify how uncertainty in ice sheet mass loss from climate
variability is modulated by such rapid retreats and other pro-
cesses.

4.3 Implications

One of the most significant results in this study is that when
glaciers with significant potential for contribution to sea level
rise undergo rapid retreats, uncertainty in total ice sheet mass
loss increases rapidly. This rapid increase in uncertainty is
predicted by theory (Robel et al., 2019) and has occurred
in other parameter-perturbed ice sheet model experiments
(DeConto et al., 2021; Lowry et al., 2021). However, be-
cause the retreats simulated for large glacier catchments in
this study are short-lived, this elevated ensemble spread is
equally short-lived when all ensemble members ultimately
go through retreat. This is because the retreats simulated in
this study are the combined result of increased flow and calv-
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ing rates on short (< 10 km) portions of bed topography that
deepen towards the ice sheet interior. In Antarctica, many
ice sheet models predict prolonged periods of rapid retreat
over long overdeepenings (hundreds of kilometers; Seroussi
et al., 2020, 2024). Thus, we can expect that a similar large-
ensemble study conducted for Antarctica could produce long
periods with strongly elevated ensemble spread. Prior ideal-
ized large-ensemble simulations of Thwaites Glacier, or rep-
resentative configurations of it, show that its retreat under
climate variability exhibits such an elevated ensemble spread
over periods of decades to centuries (Robel et al., 2019; Hoft-
man et al., 2019; Bradley and Hewitt, 2024).

Our results indicate that the transient initial ice sheet ten-
dency drives ensemble mean behavior for multiple decades
before the mean climate forcing begins to play a more promi-
nent role in controlling ice sheet behavior. This result high-
lights the critical role of initializing ice sheet models to
match recently observed ice sheet behavior, which should ul-
timately reduce inter-model spread by providing a common
point of comparison at least at the outset of simulations. The
role of initialization can be hard to discern in multi-model
ensembles such as ISMIP6 (Goelzer et al., 2020), where
models adopt very different initialization procedures, or in
parameter-perturbed ensembles, where parameter changes
produce artificial disequilibria with the initial model state
(DeConto et al., 2021). This will have the greatest influ-
ence on uncertainty in ice sheet evolution over timescales
of decades, which are the most important for communities
planning for sea level rise from ice sheet melt (Bassis, 2021).
However, the absolute values of such uncertainties are ulti-
mately just 1-2 mm sea level equivalent, which — like other
sources of global sea level projection uncertainty — are rel-
atively small compared to short-timescale uncertainties in
coastal processes.

A final important finding of this study is that at the scale
of the GrIS, SMB variability is the single largest component
of climate variability contributing to ensemble spread. Under
warming conditions, both increasing amplitude and spatial
correlation of SMB variability also substantially contribute to
ensemble spread. The non-stationarity in SMB variability has
been observed in recent ice sheet mass balance (Boers and
Rypdal, 2021) and surface mass balance (Slater et al., 2021)
and is predicted by models to continue into the future (Fyke
et al., 2014). It has been shown that such non-stationarity is
expected as a result of increased poleward moisture transport
(Bintanja et al., 2020).

An intercomparison of SMB models (Fettweis et al., 2020)
shows that dEBM generally compares as well to 30 years
of Greenland SMB observations as most other high-fidelity
SMB models. Additionally, at the few locations of available
high-resolution ice cores, Ultee et al. (2024) found that high-
fidelity SMB models appear to represent the timescales of
variability in a reasonable fashion. However, the lack of high-
quality long-running SMB observations means that it is not
possible to statistically validate the amplitude or timescales
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of variability simulated in dEBM across the entire ice sheet
(and by extension AWI-ESM) in a robust fashion. Similarly,
for TF, we rely on the timescales of variability simulated in
AWI-ESM as there are almost no locations around Greenland
with continuous records of ocean temperature at depth for
several decades. The potential importance of time-varying
SMB variability for uncertainty in ice sheet projections sug-
gests that SMB models need to be calibrated, not just to
match the mean, but also to capture the amplitude and spa-
tial correlation of interannual variability and, critically, their
multi-decadal changes. Using novel techniques for measur-
ing SMB changes from ice cores at high temporal resolution
(Trusel et al., 2018) will thus likely be critical to determining
how SMB variability may change in warmer climates.

5 Conclusions

Internal climate variability has played an important role in
mass change from the GrIS in the industrial era. In this study,
we have shown that on decadal timescales, such aleatoric
uncertainty will be an important contributor to projected
ice sheet mass loss, regardless of anthropogenic emissions.
These timescales are important for planning in coastal re-
gions. Beyond a few decades, internal climate variability
continues to drive increasing uncertainty in ice sheet simu-
lations but at a level that is relatively limited compared to
uncertainty from anthropogenic emissions and modeled ice
sheet processes. During rapid glacier retreats, aleatoric un-
certainty can grow rapidly, but in our simulations, these pe-
riods are short-lived, and the effect on ice loss uncertainty is
localized to a few catchments in western and northern Green-
land. Simulations of marine-terminating glaciers in Antarc-
tica often produce more long-lived retreats due to differences
in ice sheet geometry, thus raising the possibility of substan-
tial and sustained aleatoric uncertainty in future ensemble
projections of Antarctic ice loss.

While the representation of variability in climate models
has improved substantially, in order to validate these mod-
els and calibrate stochastic parameterizations properly, high-
quality observations are necessary. This study provides addi-
tional motivation for continuing and expanding such critical
remote sensing and fieldwork efforts for the purpose of im-
proving projections of future ice sheet change and the asso-
ciated uncertainty.

Beyond quantifying the aleatoric uncertainty in simula-
tions of future GrIS evolution, another central aim of this
study is to provide a data set for the research community to
aid in answering questions around the “natural” envelope of
ice sheet and glacier variability in Greenland. The ensem-
ble outputs are provided as open-access data sets, with in-
formation on access and data analysis detailed in the “Code
and data availability” section. We hope that this resource will
support continuing community efforts on the critical task of
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quantifying and reducing uncertainty in projections of future
ice sheet change.

Appendix A: Calculation details
Al Thermal forcing (TF)

We calculate TF with a salinity- and depth-dependent empir-
ical equation for the freezing point (Cowton et al., 2015):

TE(X, 1) = Toc(X, 1) — (A1 Soc (X, 1) + A2 + A32), (A1)

where T, is the ocean temperature [°C]; Soc is the ocean
salinity [psu]; z is the vertical coordinate with respect to the
surface level [m, positive upwards]; and A, A2, and A3 are
parameters set to —5.73 x 1072°C psu’l, 8.32 x 1072 °C,
and —7.61 x 107*°C m~!, respectively. The dependence on
space and time is highlighted by x and #, respectively. Note
that in Eq. (A1), TF is the depth-specific value, but in the
main text, we use TF to indicate the depth-integrated value.

A2 Autoregressive moving-average process (ARMA)

An ARMA process for a given variable y, of autoregres-
sive order p and moving-average order g, is denoted as
ARMA(p,q) and formulated as

)4 q
=Y @i+ O j+e, (A2)
i=1 j=1

where the subscript ¢ denotes the time step, and the AR and
MA coefficients are denoted by ¢1, ..., ¢, and 01, ..., 6,
respectively. The €, term is a Gaussian noise term. The ¢; co-
efficients capture the memory of the ARMA process, and the
0; coefficients capture the persistence of random noise effects
on the process evolution. We specify covariance between
the different stochastic climate forcing variables through the
Gaussian noise terms in the ARMA models. Specifically, a
vector €; can be drawn from a multivariate Gaussian distri-
bution of a dimension equal to the number of processes of
interest:

€, ~N(Q,2), (A3)

where X is the covariance matrix.

Figure A1 shows the selected ARMA combinations for the
residual variability time series in TF, SMB, and runoff and
for all the catchments. The Bayesian information criterion
(Schwarz, 1978) is used for the selection procedure.

To generate stochastic annual time series of our three cli-
matic variables (TF, SMB, and runoff), we use different co-
variance matrices (X in Eq. A3) for our different sub-periods
separated by the 2000, 2050, and 2100 breakpoints. Given a
correlation matrix C, a corresponding covariance matrix can
be computed as

¥ = K:CK;, (Ad)
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Figure Al. Histograms of best-fitting ARMA models for the 676 z-score time series. Results for the TF, SMB, and runoff time series are
shown in different colors. Selection is based on the BIC. The autoregressive (AR) order and the moving-average (MA) order correspond to
p and ¢ in Eq. (A2), respectively. Results for AR and MA orders of 4 are not shown because they have histogram counts of zero.

where the subscript i stands for the ith sub-period, and K; is a
diagonal matrix with the marginal standard deviations of the
ith sub-period on the diagonal. While the correlation matrix
C used to compute the different ¥; matrices remains identi-
cal, the amplitude of the variances changes through changing
K;. Therefore, we need to appropriately scale the marginal
standard deviation of all €, terms (Eq. A2), denoted o (¢). In
particular, o (¢) is not equal to the standard deviation of the
y; process (Eq. A2), denoted o (y). Any o (y) can simply be
computed from a given time series, but the entries of K; must
be o (¢). Thus, here we describe our method for estimating
o (¢€) for all sub-periods of all 676 time series. For a given
time series, we first calibrate the selected ARMA model (see
Fig. A1) to the full time series. If both the p and the g orders
(Eq. A2) are at most 1, there is an analytical expression to
calculate o (¢) (e.g., Wilks, 2011):

o(€) =0 () 1{—“’% (A5)
1+91 +2¢16;

where ¢1 =0 if p=0 and 6y =0 if g =0. If p or g is
greater than 1, we estimate o (€) numerically. We generate 10
time series from the calibrated ARMA process, starting with
o(e) = o (y). We iteratively decrease the estimate of o (¢)
until the mean total standard deviation of the 10 time series
agrees with o (y) within 0.1 %.

Appendix B: SMB-elevation profiles

Within-catchment spatial variability in SMB is captured
through estimation of the slope of SMB-elevation profiles,
referred to as lapse rates (e.g., Ultee et al., 2024). We com-
pute lapse rates as the coefficients of a piecewise-linear re-
gression of SMB versus elevation. We derive these functions
using the dEBM SMB fields averaged over 2007 to 2203 be-
cause this corresponds to the period of our ice sheet simula-
tions, as detailed in Sect. 2.3 and 2.4. We use two elevation
breakpoints in our piecewise-linear functions, thus resulting

https://doi.org/10.5194/tc-19-3749-2025

in three separate lapse rates, which capture the typical pat-
tern of strong SMB decrease with elevation in the ablation
zone, smooth increase in the lower-accumulation zone, and
gradual decrease at the uppermost elevations. In Fig. B1, we
illustrate our fitting of lapse rate functions for four large GrIS
catchments: Zachariae Isstrom, Helheim, Sermeq Kujalleq
(Jakobshavn), and Humboldt. For catchments where the fit-
ting procedure results in two breakpoints separated by less
than 100 m of elevation, we use a single breakpoint. Similar
to the lapse rate values, the elevation breakpoints are specific
to each catchment.

(a) Zachariae Isstrom (b) Helheim
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Figure B1. Illustration of the SMB fitting as piecewise-linear func-
tions of elevation. The dEBM mean 2007-2203 values are shown as
black dots, and the fitted lapse rates are shown as the blue curves.
The catchments shown are (a) Zachariae Isstrom in northeastern
Greenland, (b) Helheim in southeastern Greenland, (¢) Sermeq Ku-
jalleq in central western Greenland, and (d) Humboldt in northeast-
ern Greenland.
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Appendix C: TF calculation caveat

In this study, TF is depth integrated from the surface
(z=0m) to the effective depth corresponding to the
fjord sill (zsiy < Om) following TF = IZsin|71fZ(ZmTF(z)dz,
where TF is the depth-integrated value, while TF(z) is
the depth-specific value. Our initial objective was to fol-
low the procedure of Slater et al. (2020). However,
Slater et al. (2020) not only integrate until zgj, but also
set the water properties below zg; down to the glacier
front depth (zfont < Zsit) to the water properties at zgip.
They then integrate TF over zfone by computing TF =
|zfrone| ! [ fz(;”TF(Z)dz + TF(zsin) (zsin — Zfront)]- We  real-
ized our error in not following the expression of Slater et al.
(2020) only after the 372 simulations of this study had been
performed, and we acknowledge this caveat in our results.
However, we also believe that the impact of this caveat in
the interpretation of our results is minor to minimal for the
following reasons. (i) The assumption of within-fjord wa-
ters being linearly stratified and perfectly homogeneous be-
low zg1 is subject to large uncertainties due to, for exam-
ple, air—sea heat exchanges, within-fjord mixing processes,
glacially modified water, and iceberg melting (e.g., Jackson
and Straneo, 2016). The discrepancy between our TF calcu-
lation and the one from Slater et al. (2020) is likely much
smaller than the uncertainty range of the true TF. (ii) Our
computation of TF is consistent across all simulations, which
implies that temporal variability and trends in TF are con-
sistent with those simulated by AWI-ESM. (iii) Given that
deeper waters on the Greenland shelf are typically warmer
than surface waters, not integrating below zgj likely slightly
underestimates TF compared to the method of Slater et al.
(2020). However, we calibrate (see Sect. 2.4.2) the calving
sensitivity of all marine-terminating glaciers to their respec-
tive retreat rates over the observational record. As such, if
there is any underestimation of the true TF at a given glacier,
it is likely compensated for by an overestimation of calving
propensity; note that frontal melting and calving at the termi-
nus are treated identically by our ice sheet model.
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Appendix D: Empirical sparse correlation matrix

Figure D1 shows the sparse correlation matrix between cli-
mate forcing variables and glacier catchments discussed in
the Methods section.
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Figure D1. (a) Sparse correlation matrix of the residual variability in the three climatic variables (TF, SMB, runoff) for all 253 catchments.
Each black square along the diagonal represents correlation over the 253 catchments for a variable, while each off-diagonal black square
represents the cross-correlation over the 253 catchments for a pair of variables. The order of the climatic variables in the correlation matrix
is TF (top and left), SMB (middle and middle), and runoff (low and right). The black lines separate submatrices specific to a pair of climatic
variables for the 253 catchments. Catchment numbers correspond to a clockwise arrangement of the catchment centroids, starting from the
northernmost catchment. Note that the color bar saturates at 0.5. (b) Distance matrix between the centroids of the 253 catchments. The
discontinuity around catchment 140 corresponds to the shift between eastern and western Greenland.
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Appendix E: Time evolution of standard deviation and
skewness

Figure E1 shows the time evolution of the standard deviation
and skewness for all large and small ensembles.
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Figure E1. (a, d) Anomaly of the ensemble mean with respect to a corresponding deterministic simulation and (b, e) standard deviation
and (c, f) skewness in the ice mass of the ensembles in the (a—c) CTRL climate forcing experiments and (d—f) WARM climate forcing
experiments. Note that y axes are shared among panels of the same row. We recommend caution in interpreting the skewness of the small
ensembles, which have only 30 members, because the skewness is a third-moment statistic and thus subject to large sampling uncertainty in
small samples. See Sect. 2.5 for details about the large ensembles (LEs) and small ensembles (SEs). On the right y axes, mm SLE denotes
millimeters of sea level rise equivalent.
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Appendix F: Greenland-wide climate forcing

In this section, we illustrate the climate change forcing im-
posed under the RCP8.5 (WARM-LE) scenario compared to
the pre-2000 (CTRL-LE) conditions. At the Greenland scale,
the pre-2000 and post-2000 conditions can be compared in
Fig. F1. The SMB time series is the annual Greenland-wide
mean value, and the runoff time series is the annual Green-
land total value. For the TF variable, we take the weighted
mean of the individual marine-terminating glacier TF values,
where weights are the area of the catchment drained by each
glacier. SMB and runoff values are from the dEBM output,
and TF values are from the bias-corrected and extrapolated
values of AWI-ESM (see Sect. 2.2).
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Figure F1. Greenland-wide values of (a) TF, (b) SMB, and
(c¢) runoff. In (a), TF is the area-weighted average TF across all
catchments with marine-terminating glaciers. In (b), SMB is the
Greenland average. In (c), runoff is the Greenland total. The black
section shows the calibration period (2007-2017). The red section
shows the period on which statistics for the WARM-LE forcing are
based. The blue section shows the period on which statistics for the
CTRL-LE forcing are based. The grey sections are not used in any
calibration procedures. The dashed blue lines show the mean con-
ditions for CTRL-LE.
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Appendix G: Ice thickness change during calibration
period

Figure G1 shows a comparison of the total ice thickness
change over the calibration period (2007-2017) in the model
and in observations.
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Figure G1. Total ice thickness change over the Greenland ice sheet
during the model calibration period (2007-2017). (a) Modeled
thickness change, smoothed with a 5 km Gaussian kernel. (b) Ob-
served thickness change over the same period from Khan et al.
(2025). Performance metrics provided are the root mean square er-
ror (RMSE) and the pattern correlation (r). Note the nonlinear color
scale.

Appendix H: Statistical significance testing

When showing differences in ensemble mean or standard
deviations between different ensembles, we test for statis-
tical significance. We use a bootstrapping procedure with
300 bootstrap samples, each consisting of a random sam-
pling with replacement of size equal to the original ensemble
(100 for the large ensembles, 30 for the small ensembles).
We compute the difference in the statistic of interest (mean
and/or standard deviation) for each sample. We then compute
the two-tailed p value for the event of zero difference.

For each Greenland map, there is one local statistical
significance test per grid point. This situation is known as
multiple-hypothesis testing. We report statistical significance
by controlling for a false discovery rate (FDR) of 5 %. The
FDR approach adjusts for test multiplicity by placing a strict
limit on the fraction of significant grid cell results that are
spurious (Wilks, 2016). In this procedure, we derive the crit-
ical p value for a test considered significant (pfiyg ) following

1
FDR = D < — H1
PFDR ig}%\/ (Pz pi = NOéFDR>, (HD)

where N is the number of local hypothesis tests, appr is
the FDR level chosen (5 % here), and p; are the local test
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p values sorted in ascending order (p; < p2 < ... < pn).
This method ensures that the selected FDR level is the up-
per limit for the overall expected proportion of erroneously
rejected local null hypotheses among the rejections. This ex-
pectation holds regardless of the unknown proportion of local
tests having true null hypotheses. In contrast, reporting sig-
nificance on a local test on a local test basis only controls the
probability of each individual true null hypothesis being er-
roneously rejected. As such, there is no overall control, and
the proportion of erroneously rejected null hypotheses is an
unknown function of the proportion of null hypotheses that
should be rejected. Since the rejected hypothesis tests are of
interest, i.e., non-zero difference, it is preferable to control
the proportion of rejections that are meaningful. We refer to
Wilks (2016) for details and examples.

Code and data availability. All outputs from StISSM included
in GrISLENS (450GB in size) are archived as NetCDF
files in an open-access repository at the Arctic Data Center:
https://doi.org/10.18739/A2VX0651F (Robel et al., 2025). All fig-
ures in this study can be reproduced with the GrISLENS data repos-
itory and code included in the above-linked repository. Upon publi-
cation of this paper, an interactive tool on the CryoCloud platform
will be made available to manipulate and plot GrISLENS output
completely in the cloud.
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