Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-219-2025
https://doi.org/10.5194/tc-19-219-2025
Research article
 | 
20 Jan 2025
Research article |  | 20 Jan 2025

Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing

Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle

Related authors

Sub-seasonal snowline dynamics of glaciers in Central Asia from multi-sensor satellite observations, 2000–2023
Dilara Kim, Enrico Mattea, Mattia Callegari, Tomas Saks, Ruslan Kenzhebayev, Erlan Azisov, Tobias Ullmann, Martin Hoelzle, and Martina Barandun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3978,https://doi.org/10.5194/egusphere-2025-3978, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Modelling cold firn evolution at Colle Gnifetti, Swiss/Italian Alps
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
The Cryosphere, 19, 2983–3008, https://doi.org/10.5194/tc-19-2983-2025,https://doi.org/10.5194/tc-19-2983-2025, 2025
Short summary
Permanent Laser Scanning and 3D Time Series Analysis for Geomorphic Monitoring using Low-Cost Sensors and Open-Source Software
Lotte de Vugt, Edoardo Carraro, Ayoub Fatihi, Enrico Mattea, Eleanor Myall, Daniel Czerwonka-Schröder, and Katharina Anders
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 359–365, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-359-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-359-2025, 2025
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024,https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021,https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary

Cited articles

Aati, S., Milliner, C., and Avouac, J.-P.: A new approach for 2-D and 3-D precise measurements of ground deformation from optimized registration and correlation of optical images and ICA-based filtering of image geometry artifacts, Remote Sens. Environ., 277, 113038, https://doi.org/10.1016/j.rse.2022.113038, 2022. a, b, c, d, e, f
Abulkhasanova, A., Bassin, N., and Kamnyansky, G.: On some observed and possible changes in the tongue part of the Abramov glacier, Materialy gliatsiologicheskikh issledovaniy, 36, 206–210, 1979. a, b, c, d
Altena, B. and Leinss, S.: Improved surface displacement estimation through stacking cross-correlation spectra from multi-channel imagery, Science of Remote Sensing, 6, 100070, https://doi.org/10.1016/j.srs.2022.100070, 2022. a
Altena, B., Kääb, A., and Wouters, B.: Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements, The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, 2022. a, b
Antrix Corporation Limited: Company Profile, https://www.antrix.co.in/company-profile (last access: 14 January 2025), 2019. a
Download
Short summary
We reconstruct the evolution of terminus position, ice thickness, and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as a reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Share