Articles | Volume 19, issue 5
https://doi.org/10.5194/tc-19-1915-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1915-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How do extreme ENSO events affect Antarctic surface mass balance?
Jessica M. A. Macha
CORRESPONDING AUTHOR
Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, Kulin Nations, VIC 3800, Australia
Andrew N. Mackintosh
Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, Kulin Nations, VIC 3800, Australia
Felicity S. McCormack
Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, Kulin Nations, VIC 3800, Australia
Benjamin J. Henley
School of Agriculture, Food & Ecosystem Sciences, University of Melbourne, Burnley, VIC 3121, Australia
Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Helen V. McGregor
Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Environmental Futures, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Christiaan T. van Dalum
Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Ariaan Purich
Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, Kulin Nations, VIC 3800, Australia
Related authors
No articles found.
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386, https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary
Short summary
A realistic representation of Antarctic sea ice is crucial for accurate climate and ocean model predictions. We assessed how different models capture the sunlight reflectivity, snow cover, and ice thickness. Most performed well under mild weather conditions, but overestimated snow/ice reflectivity during cold, with patchy/thin snow conditions. High-resolution satellite imagery revealed spatial albedo variability that models failed to replicate.
René R. Wijngaard, Willem Jan van de Berg, Christaan T. van Dalum, Adam R. Herrington, and Xavier J. Levine
EGUsphere, https://doi.org/10.5194/egusphere-2025-1070, https://doi.org/10.5194/egusphere-2025-1070, 2025
Short summary
Short summary
We used the variable-resolution CESM to simulate present-day and future temperature and precipitation extremes in the Arctic by applying global grids (~111 km) with and without regional refinement (~28 km) and following a storyline approach. We found that global grids with (without) regional refinement generally perform better in simulating present-day precipitation (temperature) extremes, and that future high (low) temperature and wet precipitation extremes are projected to increase (decrease).
Lawrence A. Bird, Felicity S. McCormack, Johanna Beckmann, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 955–973, https://doi.org/10.5194/tc-19-955-2025, https://doi.org/10.5194/tc-19-955-2025, 2025
Short summary
Short summary
Vanderford Glacier is the fastest-retreating glacier in East Antarctica and may have important implications for future ice loss from the Aurora Subglacial Basin. Our ice sheet model simulations suggest that grounding line retreat is driven by sub-ice-shelf basal melting, in which warm ocean waters melt ice close to the grounding line. We show that current estimates of basal melt are likely too low, highlighting the need for improved estimates and direct measurements of basal melt in the region.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jeremie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
EGUsphere, https://doi.org/10.5194/egusphere-2025-211, https://doi.org/10.5194/egusphere-2025-211, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water to below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent, and within these ice shelf cavities, using measurements of the Earth’s gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Christiaan T. van Dalum, Willem Jan van de Berg, Michiel R. van den Broeke, and Maurice van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3728, https://doi.org/10.5194/egusphere-2024-3728, 2025
Short summary
Short summary
In this study, we present a new surface mass balance (SMB) and near-surface climate product for Antarctica with the regional climate model RACMO2.4p1. We assess the impact of major model updates on the climate of Antarctica. Locally, the SMB has changed substantially, but also agrees well with observations. In addition, we show that the SMB components, surface energy budget, albedo, pressure, temperature and wind speed compare well with in-situ and remote sensing observations.
Levan G. Tielidze, Andrew N. Mackintosh, and Weilin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3811, https://doi.org/10.5194/egusphere-2024-3811, 2025
Short summary
Short summary
Heard Island is an UNESCO World Heritage site due to its outstanding physical and biological features which are being affected by significant on-going climatic changes. As one of the only sub-Antarctic islands mostly free of introduced species, its ecosystems are particularly at risk from the impact of glacier retreat. This glacier inventory will help in designing effective conservation strategies and managing protected areas to ensure the preservation of the biodiversity they support.
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Cari Rand, Richard S. Jones, Andrew N. Mackintosh, Brent Goehring, and Kat Lilly
EGUsphere, https://doi.org/10.5194/egusphere-2024-2674, https://doi.org/10.5194/egusphere-2024-2674, 2024
Short summary
Short summary
In this study, we determine how recently samples from a mountain in East Antarctica were last covered by the East Antarctic ice sheet. By examining concentrations of carbon-14 in rock samples, we determined that all but the summit of the mountain was buried under glacial ice within the last 15 thousand years. Other methods of estimating past ice thicknesses are not sensitive enough to capture ice cover this recent, so we were previously unaware that ice at this site was thicker at this time.
Helen J. Shea, Ailie Gallant, Ariaan Purich, and Tessa R. Vance
EGUsphere, https://doi.org/10.5194/egusphere-2024-2660, https://doi.org/10.5194/egusphere-2024-2660, 2024
Short summary
Short summary
The tropical Pacific influences sea salt levels in the ice core from Mount Brown South (MBS), East Antarctica. High sea salt years are linked to stronger westerly winds and increased sea ice near MBS's northeast coast. El Niño events affect wind patterns around MBS, impacting sea salt sources. Low pressure storms off the coast might transport sea salts from sea ice regions to MBS. Identifying these mechanisms aids in the understanding of climate variability before instrumental records.
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Koi McArthur, Felicity S. McCormack, and Christine F. Dow
The Cryosphere, 17, 4705–4727, https://doi.org/10.5194/tc-17-4705-2023, https://doi.org/10.5194/tc-17-4705-2023, 2023
Short summary
Short summary
Using subglacial hydrology model outputs for Denman Glacier, East Antarctica, we investigated the effects of various friction laws and effective pressure inputs on ice dynamics modeling over the same glacier. The Schoof friction law outperformed the Budd friction law, and effective pressure outputs from the hydrology model outperformed a typically prescribed effective pressure. We propose an empirical prescription of effective pressure to be used in the absence of hydrology model outputs.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Jacinda A. O'Connor, Benjamin J. Henley, Matthew T. Brookhouse, and Kathryn J. Allen
Clim. Past, 18, 2567–2581, https://doi.org/10.5194/cp-18-2567-2022, https://doi.org/10.5194/cp-18-2567-2022, 2022
Short summary
Short summary
Tree-ring records provide a unique window into past climate variability. However, there are few such records from the Australian mainland. We present results from nine cross-sections of an alpine tree species from the Victorian Alps from 1929–1998. The tree-ring widths have significant correlations with winter temperature, precipitation and snow depth. The intensity of reflected blue light from the wood surface shows a strong response to growing season temperature and winter precipitation.
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022, https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Zhiang Xie, Dietmar Dommenget, Felicity S. McCormack, and Andrew N. Mackintosh
Geosci. Model Dev., 15, 3691–3719, https://doi.org/10.5194/gmd-15-3691-2022, https://doi.org/10.5194/gmd-15-3691-2022, 2022
Short summary
Short summary
Paleoclimate research requires better numerical model tools to explore interactions among the cryosphere, atmosphere, ocean and land surface. To explore those interactions, this study offers a tool, the GREB-ISM, which can be run for 2 million model years within 1 month on a personal computer. A series of experiments show that the GREB-ISM is able to reproduce the modern ice sheet distribution as well as classic climate oscillation features under paleoclimate conditions.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, https://doi.org/10.5194/tc-16-1071-2022, 2022
Short summary
Short summary
In this study, we improve the regional climate model RACMO2 and investigate the climate of Antarctica. We have implemented a new radiative transfer and snow albedo scheme and do several sensitivity experiments. When fully tuned, the results compare well with observations and snow temperature profiles improve. Moreover, small changes in the albedo and the investigated processes can lead to a strong overestimation of melt, locally leading to runoff and a reduced surface mass balance.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021, https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Short summary
Ice sheet and ice shelf models rely on data from experiments to accurately represent the way ice moves. Performing experiments at the temperatures and stresses that are generally present in nature takes a long time, and so there are few of these datasets. Here, we test the method of speeding up an experiment by running it initially at a higher temperature, before dropping to a lower target temperature to generate the relevant data. We show that this method can reduce experiment time by 55 %.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Short summary
Absorption of solar radiation is often limited to the surface in regional climate models. Therefore, we have implemented a new radiative transfer scheme in the model RACMO2, which allows for internal heating and improves the surface reflectivity. Here, we evaluate its impact on the surface mass and energy budget and (sub)surface temperature, by using observations and the previous model version for the Greenland ice sheet. New results match better with observations and introduce subsurface melt.
Christiaan T. van Dalum, Willem Jan van de Berg, Stef Lhermitte, and Michiel R. van den Broeke
The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, https://doi.org/10.5194/tc-14-3645-2020, 2020
Short summary
Short summary
The reflectivity of sunlight, which is also known as albedo, is often inadequately modeled in regional climate models. Therefore, we have implemented a new snow and ice albedo scheme in the regional climate model RACMO2. In this study, we evaluate a new RACMO2 version for the Greenland ice sheet by using observations and the previous model version. RACMO2 output compares well with observations, and by including new processes we improve the ability of RACMO2 to make future climate projections.
Syed Abdul Salam, Jason L. Roberts, Felicity S. McCormack, Richard Coleman, and Jacqueline A. Halpin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-146, https://doi.org/10.5194/essd-2020-146, 2020
Publication in ESSD not foreseen
Short summary
Short summary
Accurate estimates of englacial temperature and geothermal heat flux are incredibly important
for constraining model simulations of ice dynamics (e.g. viscosity is temperature-dependent) and sliding. However, we currently have few direct measurements of vertical temperature (i.e. only at boreholes/ice domes) and geothermal heat flux in Antarctica. This method derives attenuation rates, that can then be mapped directly to englacial temperatures and geothermal heat flux.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Felicity S. Graham, Mathieu Morlighem, Roland C. Warner, and Adam Treverrow
The Cryosphere, 12, 1047–1067, https://doi.org/10.5194/tc-12-1047-2018, https://doi.org/10.5194/tc-12-1047-2018, 2018
Short summary
Short summary
Ice sheet flow is anisotropic, depending on the nature of the stress applied. However, most large-scale ice sheet models rely on the Glen flow relation, which ignores anisotropic effects. We implement a flow relation (ESTAR) for anisotropic ice in a large-scale ice sheet model. In ice shelf simulations, the Glen flow relation overestimates velocities by up to 17 % compared with ESTAR. Our results have implications for ice sheet model simulations of paleo-ice extent and sea level rise prediction.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Felicity S. Graham, Jason L. Roberts, Ben K. Galton-Fenzi, Duncan Young, Donald Blankenship, and Martin J. Siegert
Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, https://doi.org/10.5194/essd-9-267-2017, 2017
Short summary
Short summary
Antarctic bed topography datasets are interpolated onto low-resolution grids because our observed topography data are sparsely sampled. This has implications for ice-sheet model simulations, especially in regions prone to instability, such as grounding lines, where detailed knowledge of the topography is required. Here, we constructed a high-resolution synthetic bed elevation dataset using observed covariance properties to assess the dependence of simulated ice-sheet dynamics on grid resolution.
Related subject area
Discipline: Snow | Subject: Antarctic
Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-dataset and modelling analysis
Dual-frequency radar observations of snowmelt processes on Antarctic perennial sea ice by CFOSCAT and ASCAT
Contribution of blowing-snow sublimation to the surface mass balance of Antarctica
A decade (2008–2017) of water stable isotope composition of precipitation at Concordia Station, East Antarctica
Firn air content changes on Antarctic ice shelves under three future warming scenarios
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica
Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A
The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack
Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt
Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance
Representative surface snow density on the East Antarctic Plateau
Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations
Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica
Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica
Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning
Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica
Investigation of a wind-packing event in Queen Maud Land, Antarctica
Archival processes of the water stable isotope signal in East Antarctic ice cores
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
The Cryosphere, 19, 597–618, https://doi.org/10.5194/tc-19-597-2025, https://doi.org/10.5194/tc-19-597-2025, 2025
Short summary
Short summary
We use three sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined and that it was generated by the interaction of air with steep topography. Our results show that kilometre-scale models are useful tools for exploring extreme precipitation in this region and that more observations of rainfall are needed.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
The Cryosphere, 19, 173–200, https://doi.org/10.5194/tc-19-173-2025, https://doi.org/10.5194/tc-19-173-2025, 2025
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024, https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on perennial Antarctic sea ice. Results show that since 2007, snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference in snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Srinidhi Gadde and Willem Jan van de Berg
The Cryosphere, 18, 4933–4953, https://doi.org/10.5194/tc-18-4933-2024, https://doi.org/10.5194/tc-18-4933-2024, 2024
Short summary
Short summary
Blowing-snow sublimation is the major loss term in the mass balance of Antarctica. In this study we update the blowing-snow representation in the Regional Atmospheric Climate Model (RACMO). With the updates, results compare well with observations from East Antarctica. Also, the continent-wide variation of blowing snow compares well with satellite observations. Hence, the updates provide a clear step forward in producing a physically sound and reliable estimate of the mass balance of Antarctica.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144, https://doi.org/10.5194/tc-14-4135-2020, https://doi.org/10.5194/tc-14-4135-2020, 2020
Short summary
Short summary
The increase in Antarctic surface mass balance (SMB, precipitation vs. evaporation/sublimation) is projected to mitigate sea-level rise. Here we show that nearly half of this increase over the 20th century is attributed to stratospheric ozone depletion and ozone-depleting substance (ODS) emissions. Our results suggest that the phaseout of ODS by the Montreal Protocol, and the recovery of stratospheric ozone, will act to decrease the SMB over the 21st century and the mitigation of sea-level rise.
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Short summary
From 1 m snow profiles along a traverse on the East Antarctic Plateau, we calculated a representative surface snow density of 355 kg m−3 for this region with an error less than 1.5 %.
This density is 10 % higher and density fluctuations seem to happen on smaller scales than climate model outputs suggest. Our study can help improve the parameterization of surface snow density in climate models to reduce the error in future sea level predictions.
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
Charles Amory
The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020, https://doi.org/10.5194/tc-14-1713-2020, 2020
Short summary
Short summary
This paper presents an assessment of drifting-snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected at two remote locations in coastal Adelie Land (East Antarctica) using second-generation IAV Engineering acoustic FlowCapt sensors. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Short summary
To study how snow accumulates in Antarctica, we analyze daily surface elevation recorded by an automatic laser scanner. We show that new snow often accumulates in thick patches covering a small fraction of the surface. Most patches are removed by erosion within weeks, implying that only a few contribute to the snowpack. This explains the heterogeneity on the surface and in the snowpack. These findings are important for surface mass and energy balance, photochemistry, and ice core interpretation.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Cited articles
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby Wave Propagation and Teleconnection Patterns in the Austral Winter, J. Atmos. Sci., 52, 3661–3672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2, 1995. a, b, c
Ashok, K., Nakamura, H., and Yamagata, T.: Impacts of ENSO and Indian Ocean Dipole Events on the Southern Hemisphere Storm-Track Activity during Austral Winter, J. Climate, 20, 3147–3163, https://doi.org/10.1175/JCLI4155.1, 2007. a
Bell, G., Halpert, M., and L’Heureux., M.: The Tropics, [in 'State of the Climate in 2015'], edited by: Diamond, H. and Schreck, C., Bull. Am. Meteorol. Soc., 97, S173–S226, https://doi.org/10.1175/2016BAMSStateoftheClimate.1, 2015. a
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven Mass Change on the East Antarctic Ice Sheet, Geophys. Res. Lett., 39, 2012GL053316, https://doi.org/10.1029/2012GL053316, 2012. a, b, c, d
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing Frequency of Extreme El Niño Events Due to Greenhouse Warming, Nat. Clim. Change, 4, 111–116, https://doi.org/10.1038/nclimate2100, 2014. a, b
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.: ENSO and Greenhouse Warming, Nat. Clim. Change, 5, 849–859, https://doi.org/10.1038/nclimate2743, 2015a. a
Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F.-F., Timmermann, A., Collins, M., Vecchi, G., Lengaigne, M., England, M. H., Dommenget, D., Takahashi, K., and Guilyardi, E.: Increased Frequency of Extreme La Niña Events under Greenhouse Warming, Nat. Clim. Change, 5, 132–137, https://doi.org/10.1038/nclimate2492, 2015b. a, b
Cai, W., Ng, B., Geng, T., Jia, F., Wu, L., Wang, G., Liu, Y., Gan, B., Yang, K., Santoso, A., Lin, X., Li, Z., Liu, Y., Yang, Y., Jin, F.-F., Collins, M., and McPhaden, M. J.: Anthropogenic Impacts on Twentieth-Century ENSO Variability Changes, Nature Reviews Earth & Environment, 4, 407–418, https://doi.org/10.1038/s43017-023-00427-8, 2023. a, b
Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J.-Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., and Yeh, S.-W.: Understanding ENSO Diversity, B. Am. Meteorol. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1, 2015. a, b, c
Changnon, S. A.: Impacts of 1997–98 El Niño Generated Weather in the United States, B. Am. Meteorol. Soc., 80, 1819–1827, https://doi.org/10.1175/1520-0477(1999)080<1819:IOENOG>2.0.CO;2, 1999. a
Ciasto, L. M., Simpkins, G. R., and England, M. H.: Teleconnections between Tropical Pacific SST Anomalies and Extratropical Southern Hemisphere Climate, J. Climate, 28, 56–65, https://doi.org/10.1175/JCLI-D-14-00438.1, 2015. a, b
Clem, K. R., Renwick, J. A., and McGregor, J.: Large-Scale Forcing of the Amundsen Sea Low and Its Influence on Sea Ice and West Antarctic Temperature, J. Climate, 30, 8405–8424, https://doi.org/10.1175/JCLI-D-16-0891.1, 2017. a
Clem, K. R., Renwick, J. A., and McGregor, J.: Autumn Cooling of Western East Antarctica Linked to the Tropical Pacific: ENSO and East Antarctic Climate, J. Geophys. Res.-Atmos., 123, 89–107, https://doi.org/10.1002/2017JD027435, 2018. a, b
Cullather, R. I., Bromwich, D. H., and Van Woert, M. L.: Interannual Variations in Antarctic Precipitation Related to El Niño-Southern Oscillation, J. Geophys. Res.-Atmos., 101, 19109–19118, https://doi.org/10.1029/96JD01769, 1996. a
Davison, B. J., Hogg, A. E., Rigby, R., Veldhuijsen, S., Van Wessem, J. M., Van Den Broeke, M. R., Holland, P. R., Selley, H. L., and Dutrieux, P.: Sea Level Rise from West Antarctic Mass Loss Significantly Modified by Large Snowfall Anomalies, Nat. Commun., 14, 1479, https://doi.org/10.1038/s41467-023-36990-3, 2023. a
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: Variability, Trends, and Climate Impacts across the Southern Hemisphere, WIREs Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020. a, b, c
Fogt, R. L., Bromwich, D. H., and Hines, K. M.: Understanding the SAM Influence on the South Pacific ENSO Teleconnection, Clim. Dynam., 36, 1555–1576, https://doi.org/10.1007/s00382-010-0905-0, 2011. a, b
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021. a, b, c, d
Freund, M. B., Brown, J. R., Marshall, A. G., Tozer, C. R., Henley, B. J., Risbey, J. S., Ramesh, N., Lieber, R., and Sharmila, S.: Interannual ENSO Diversity, Transitions, and Projected Changes in Observations and Climate Models, Environ. Res. Lett., 19, 114005, https://doi.org/10.1088/1748-9326/ad78db, 2024. a
Goodwin, B. P., Mosley-Thompson, E., Wilson, A. B., Porter, S. E., and Sierra-Hernandez, M. R.: Accumulation Variability in the Antarctic Peninsula: The Role of Large-Scale Atmospheric Oscillations and Their Interactions, J. Climate, 29, 2579–2596, https://doi.org/10.1175/JCLI-D-15-0354.1, 2016. a
Guo, Z., Bromwich, D., and Hines, K.: Modeled Antarctic Precipitation. Part II: ENSO Modulation over West Antarctica., J. Climate, 17, 448–465, https://doi.org/10.1175/1520-0442(2004)017<0448:MAPPIE>2.0.CO;2, 2004. a
Hammersley, J. M. and Handscomb, D. C.: Monte Carlo Methods, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-5819-7, 1964. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c, d, e
Huguenin, M. F., Holmes, R. M., Spence, P., and England, M. H.: Subsurface Warming of the West Antarctic Continental Shelf Linked to El Niño-Southern Oscillation, Geophys. Res. Lett., 51, e2023GL104518, https://doi.org/10.1029/2023GL104518, 2024. a, b, c
Jonkman, S. N.: Global Perspectives on Loss of Human Life Caused by Floods, Nat. Hazards, 34, 151–175, https://doi.org/10.1007/s11069-004-8891-3, 2005. a
King, M. A. and Christoffersen, P.: Major Modes of Climate Variability Dominate Nonlinear Antarctic Ice-Sheet Elevation Changes 2002–2020, Geophys. Res. Lett., 51, e2024GL108844, https://doi.org/10.1029/2024GL108844, 2024. a
King, M. A., Lyu, K., and Zhang, X.: Climate Variability a Key Driver of Recent Antarctic Ice-Mass Change, Nat. Geosci., 16, 1128–1135, https://doi.org/10.1038/s41561-023-01317-w, 2023. a, b, c
Kug, J.-S., Jin, F.-F., and An, S.-I.: Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño, J. Climate, 22, 1499–1515, https://doi.org/10.1175/2008JCLI2624.1, 2009. a
Lee, S.-K., Wang, C., and Mapes, B. E.: A Simple Atmospheric Model of the Local and Teleconnection Responses to Tropical Heating Anomalies, J. Climate, 22, 272–284, https://doi.org/10.1175/2008JCLI2303.1, 2009. a, b
Lenaerts, J. T. M., Ligtenberg, S. R. M., Medley, B., Van de Berg, W. J., Konrad, H., Nicolas, J. P., Van Wessem, J. M., Trusel, L. D., Mulvaney, R., Tuckwell, R. J., Hogg, A. E., and Thomas, E. R.: Climate and Surface Mass Balance of Coastal West Antarctica Resolved by Regional Climate Modelling, Ann. Glaciol., 59, 29–41, https://doi.org/10.1017/aog.2017.42, 2018. a
L'Heureux, M. L., Takahashi, K., Watkins, A. B., Barnston, A. G., Becker, E. J., Di Liberto, T. E., Gamble, F., Gottschalck, J., Halpert, M. S., Huang, B., Mosquera-Vásquez, K., and Wittenberg, A. T.: Observing and Predicting the 2015/16 El Niño, B. Am. Meteorol. Soc., 98, 1363–1382, https://doi.org/10.1175/BAMS-D-16-0009.1, 2017. a, b, c, d, e, f
Lieber, R., Brown, J., King, A., and Freund, M.: Historical and Future Asymmetry of ENSO Teleconnections with Extremes, J. Climate, https://doi.org/10.1175/JCLI-D-23-0619.1, 2024. a, b, c, d
Liu, H., Jezek, K., Li, B., and Zhao, Z.: Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center [data set], https://doi.org/10.5067/8JKNEW6BFRVD, 2001. a
Macha, J.: ENSO Extremes Python code used in Macha et al. (2024), The Cryosphere, Monash University [code and software], https://doi.org/10.26180/27092830.v1, 2025. a
Macha, J. M. A., Mackintosh, A. N., McCormack, F. S., Henley, B. J., McGregor, H. V., Van Dalum, C. T., and Purich, A.: Distinct Central and Eastern Pacific El Niño Influence on Antarctic Surface Mass Balance, Geophys. Res. Lett., 51, e2024GL109423, https://doi.org/10.1029/2024GL109423, 2024. a, b, c, d, e, f, g, h
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and Reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003. a, b
Marshall, G. J. and Thompson, D. W. J.: The Signatures of Large-scale Patterns of Atmospheric Variability in Antarctic Surface Temperatures, J. Geophys. Res.-Atmos., 121, 3276–3289, https://doi.org/10.1002/2015JD024665, 2016. a, b
Marshall, G. J., Thompson, D. W. J., and Broeke, M. R.: The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation, Geophys. Res. Lett., 44, 11580–11589, https://doi.org/10.1002/2017GL075998, 2017. a, b, c
McGregor, S., Cassou, C., Kosaka, Y., and Phillips, A. S.: Projected ENSO Teleconnection Changes in CMIP6, Geophys. Res. Lett., 49, L097511, https://doi.org/10.1029/2021GL097511, 2022. a
Medley, B. and Thomas, E. R.: Increased Snowfall over the Antarctic Ice Sheet Mitigated Twentieth-Century Sea-Level Rise, Nat. Clim. Change, 9, 34–39, https://doi.org/10.1038/s41558-018-0356-x, 2019. a, b
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions. in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 203–320, https://doi.org/10.1017/9781009157964.005, 2019. a, b, c
Mirza, M. M. Q., Warrick, R. A., Ericksen, N. J., and Kenny, G. J.: Are Floods Getting Worse in the Ganges, Brahmaputra and Meghna Basins?, Environ. Hazards-UK, 3, 37–48, https://doi.org/10.3763/ehaz.2001.0305, 2001. a
Mudelsee, M.: Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, no. v.42 in Atmospheric and Oceanographic Sciences Library, Springer, Dordrecht; New York, 9783319044507, 2010. a
Ninno, C. D. and Dorosh, P. A.: Averting a Food Crisis: Private Imports and Public Targeted Distribution in Bangladesh after the 1998 Flood, Agr. Econ., 25, 337–346, https://doi.org/10.1111/j.1574-0862.2001.tb00213.x, 2001. a
Noone, D., Turner, J., and Mulvaney, R.: Atmospheric Signals and Characteristics of Accumulation in Dronning Maud Land, Antarctica, J. Geophys. Res.-Atmos., 104, 19191–19211, https://doi.org/10.1029/1999JD900376, 1999. a
Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M., and Hobbs, W. R.: The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate, B. Am. Meteorol. Soc., 97, 111–121, https://doi.org/10.1175/BAMS-D-14-00018.1, 2016. a
Rayner, N. A.: Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003. a, b, c
Reijmer, C. H. and Broeke, M. R. V. D.: Temporal and Spatial Variability of the Surface Mass Balance in Dronning Maud Land, Antarctica, as Derived from Automatic Weather Stations, J. Glaciol., 49, 512–520, https://doi.org/10.3189/172756503781830494, 2003. a, b, c, d
Ren, H.-L. and Jin, F.-F.: Niño Indices for Two Types of ENSO, Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031, 2011. a, b, c
Renwick, J. A. and Revell, M. J.: Blocking over the South Pacific and Rossby Wave Propagation, Mon. Weather Rev., 127, 2233–2247, https://doi.org/10.1175/1520-0493(1999)127<2233:BOTSPA>2.0.CO;2, 1999. a, b, c
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem, M.: Four Decades of Antarctic Ice Sheet Mass Balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a, b
Sasgen, I., Dobslaw, H., Martinec, Z., and Thomas, M.: Satellite Gravimetry Observation of Antarctic Snow Accumulation Related to ENSO, Earth Pl. Sc. Lett., 299, 352–358, https://doi.org/10.1016/j.epsl.2010.09.015, 2010. a
Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S., and Van Dalum, C. T.: How Does the Southern Annular Mode Control Surface Melt in East Antarctica?, Geophys. Res. Lett., 51, e2023GL105475, https://doi.org/10.1029/2023GL105475, 2024. a
Schlosser, E., Powers, J. G., Duda, M. G., Manning, K. W., Reijmer, C. H., and Van Den Broeke, M. R.: An Extreme Precipitation Event in Dronning Maud Land, Antarctica: A Case Study with the Antarctic Mesoscale Prediction System: Antarctic Precipitation Case Study, Polar Res., 29, 330–344, https://doi.org/10.1111/j.1751-8369.2010.00164.x, 2010. a, b, c, d
Simon, S., Turner, J., Thamban, M., Wille, J. D., and Deb, P.: Spatiotemporal Variability of Extreme Precipitation Events and Associated Atmospheric Processes Over Dronning Maud Land, East Antarctica, J. Geophys. Res.-Atmos., 129, e2023JD038993, https://doi.org/10.1029/2023JD038993, 2024. a, b
Smirnov, N.: Table for Estimating the Goodness of Fit of Empirical Distributions, Ann. Math. Stat., 19, 279–281, https://doi.org/10.1214/aoms/1177730256, 1948. a
Sponberg, K.: Compendium of Climate Variability. Office of Global Programs, NOAA, Silver Spring, MD, 1999. a
Srinivas, G., Vialard, J., Liu, F., Voldoire, A., Izumo, T., Guilyardi, E., and Lengaigne, M.: Dominant Contribution of Atmospheric Nonlinearities to ENSO Asymmetry and Extreme El Niño Events, Sci. Rep., 14, 8122, https://doi.org/10.1038/s41598-024-58803-3, 2024. a, b
Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., and Shindell, D. T.: Warming of the Antarctic Ice-Sheet Surface since the 1957 International Geophysical Year, Nature, 457, 459–462, https://doi.org/10.1038/nature07669, 2009. a
Stevenson, S., Fox-Kemper, B., Jochum, M., Rajagopalan, B., and Yeager, S. G.: ENSO Model Validation Using Wavelet Probability Analysis, J. Climate, 23, 5540–5547, https://doi.org/10.1175/2010JCLI3609.1, 2010. a, b, c
Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B.: ENSO Regimes: Reinterpreting the Canonical and Modoki El Niño, Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364, 2011. a
Turner, J.: The El Niño-southern Oscillation and Antarctica: ENSO and the Antarctic, Int. J. Climatol., 24, 1–31, https://doi.org/10.1002/joc.965, 2004. a, b
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.: The Amundsen Sea Low: The Amundsen Sea Low, Int. J. Climatol., 33, 1818–1829, https://doi.org/10.1002/joc.3558, 2013. a
Turner, J., Phillips, T., Thamban, M., Rahaman, W., Marshall, G. J., Wille, J. D., Favier, V., Winton, V. H. L., Thomas, E., Wang, Z., Van Den Broeke, M., Hosking, J. S., and Lachlan-Cope, T.: The Dominant Role of Extreme Precipitation Events in Antarctic Snowfall Variability, Geophys. Res. Lett., 46, 3502–3511, https://doi.org/10.1029/2018GL081517, 2019. a
van Dalum, C. T., van de Berg, W. J., and van den Broeke, M. R.: Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3, The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, 2022. a, b, c
Van Wessem, J., Reijmer, C., Morlighem, M., Mouginot, J., Rignot, E., Medley, B., Joughin, I., Wouters, B., Depoorter, M., Bamber, J., Lenaerts, J., Van De Berg, W., Van Den Broeke, M., and Van Meijgaard, E.: Improved Representation of East Antarctic Surface Mass Balance in a Regional Atmospheric Climate Model, J. Glaciol., 60, 761–770, https://doi.org/10.3189/2014JoG14J051, 2014. a
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018. a
Vera, C. S. and Osman, M.: Activity of the Southern Annular Mode during 2015–2016 El Niño Event and Its Impact on Southern Hemisphere Climate Anomalies, Int. J. Climatol., 38, https://doi.org/10.1002/joc.5419, 2018. a, b
Webster, P. J.: Seasonality in the Local and Remote Atmospheric Response to Sea Surface Temperature Anomalies, J. Atmos. Sci., 39, 41–52, https://doi.org/10.1175/1520-0469(1982)039<0041:SITLAR>2.0.CO;2, 1982. a, b, c, d
Welhouse, L. J., Lazzara, M. A., Keller, L. M., Tripoli, G. J., and Hitchman, M. H.: Composite Analysis of the Effects of ENSO Events on Antarctica, J. Climate, 29, 1797–1808, https://doi.org/10.1175/JCLI-D-15-0108.1, 2016. a
Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T. M., and Codron, F.: Antarctic Atmospheric River Climatology and Precipitation Impacts, J. Geophys. Res.-Atmos., 126, https://doi.org/10.1029/2020JD033788, 2021. a
Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., Berne, A., Binder, H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R., Battista, S. D., Favier, V., Francis, D., Fraser, A. D., Fourré, E., Garreaud, R. D., Genthon, C., Gorodetskaya, I. V., González-Herrero, S., Heinrich, V. J., Hubert, G., Joos, H., Kim, S.-J., King, J. C., Kittel, C., Landais, A., Lazzara, M., Leonard, G. H., Lieser, J. L., Maclennan, M., Mikolajczyk, D., Neff, P., Ollivier, I., Picard, G., Pohl, B., Ralph, F. M., Rowe, P., Schlosser, E., Shields, C. A., Smith, I. J., Sprenger, M., Trusel, L., Udy, D., Vance, T., Vignon, E., Walker, C., Wever, N., and Zou, X.: The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet, J. Climate, 37, 779–799, https://doi.org/10.1175/JCLI-D-23-0176.1, 2024. a, b
Wittenberg, A. T.: Are Historical Records Sufficient to Constrain ENSO Simulations?, Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710, 2009. a, b
Xue, Y. and Kumar, A.: Evolution of the 2015/16 El Niño and Historical Perspective since 1979, Sci. China Earth Sci., 60, 1572–1588, https://doi.org/10.1007/s11430-016-0106-9, 2017. a, b, c, d
Yiu, Y. Y. S. and Maycock, A. C.: The Linearity of the El Niño Teleconnection to the Amundsen Sea Region, Q. J. Roy. Meteor. Soc., 146, 1169–1183, https://doi.org/10.1002/qj.3731, 2020. a, b
Yuan, X., Kaplan, M. R., and Cane, M. A.: The Interconnected Global Climate System – A Review of Tropical–Polar Teleconnections, J. Climate, 31, 5765–5792, https://doi.org/10.1175/JCLI-D-16-0637.1, 2018. a
Short summary
Extreme El Niño–Southern Oscillation (ENSO) events have global impacts, but their Antarctic impacts are poorly understood. Examining Antarctic snow accumulation anomalies of past observed extreme ENSO events, we show that accumulation changes differ between events and are insignificant during most events. Significant changes occur during 2015/16 and in Enderby Land during all extreme El Niños. Historical data limit conclusions, but future greater extremes could cause Antarctic accumulation changes.
Extreme El Niño–Southern Oscillation (ENSO) events have global impacts, but their Antarctic...