Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-4933-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-4933-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of blowing-snow sublimation to the surface mass balance of Antarctica
Srinidhi Gadde
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Willem Jan van de Berg
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands
Related authors
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-851, https://doi.org/10.5194/egusphere-2024-851, 2024
Short summary
Short summary
In this study, we present an improved way of representing ice thickness change rates into an ice sheet model. We apply this method using two ice sheet models on the Antarctic Ice Sheet. We found that the two largest outlet glaciers on the Antarctic Ice Sheet, the Thwaites Glacier and Pine Island Glacier, will collapse without further warming on a timescale of centuries. This would cause a sea level rise of about 1.2 meters globally.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022, https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Short summary
The ice on Greenland has been melting more rapidly over the last few years. Most of this melt comes from the exposure of ice when the overlying snow melts. This ice is darker than snow and absorbs more sunlight, leading to more melt. It remains challenging to accurately simulate the brightness of the ice. We show that the color of ice simulated by Modèle Atmosphérique Régional (MAR) is too bright. We then show that this means that MAR may underestimate how fast the Greenland ice is melting.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Tiago Silva, Jakob Abermann, Brice Noël, Sonika Shahi, Willem Jan van de Berg, and Wolfgang Schöner
The Cryosphere, 16, 3375–3391, https://doi.org/10.5194/tc-16-3375-2022, https://doi.org/10.5194/tc-16-3375-2022, 2022
Short summary
Short summary
To overcome internal climate variability, this study uses k-means clustering to combine NAO, GBI and IWV over the Greenland Ice Sheet (GrIS) and names the approach as the North Atlantic influence on Greenland (NAG). With the support of a polar-adapted RCM, spatio-temporal changes on SEB components within NAG phases are investigated. We report atmospheric warming and moistening across all NAG phases as well as large-scale and regional-scale contributions to GrIS mass loss and their interactions.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, https://doi.org/10.5194/tc-16-1071-2022, 2022
Short summary
Short summary
In this study, we improve the regional climate model RACMO2 and investigate the climate of Antarctica. We have implemented a new radiative transfer and snow albedo scheme and do several sensitivity experiments. When fully tuned, the results compare well with observations and snow temperature profiles improve. Moreover, small changes in the albedo and the investigated processes can lead to a strong overestimation of melt, locally leading to runoff and a reduced surface mass balance.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Short summary
Absorption of solar radiation is often limited to the surface in regional climate models. Therefore, we have implemented a new radiative transfer scheme in the model RACMO2, which allows for internal heating and improves the surface reflectivity. Here, we evaluate its impact on the surface mass and energy budget and (sub)surface temperature, by using observations and the previous model version for the Greenland ice sheet. New results match better with observations and introduce subsurface melt.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Christiaan T. van Dalum, Willem Jan van de Berg, Stef Lhermitte, and Michiel R. van den Broeke
The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, https://doi.org/10.5194/tc-14-3645-2020, 2020
Short summary
Short summary
The reflectivity of sunlight, which is also known as albedo, is often inadequately modeled in regional climate models. Therefore, we have implemented a new snow and ice albedo scheme in the regional climate model RACMO2. In this study, we evaluate a new RACMO2 version for the Greenland ice sheet by using observations and the previous model version. RACMO2 output compares well with observations, and by including new processes we improve the ability of RACMO2 to make future climate projections.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Willem Jan van de Berg, Erik van Meijgaard, and Lambertus H. van Ulft
The Cryosphere, 14, 1809–1827, https://doi.org/10.5194/tc-14-1809-2020, https://doi.org/10.5194/tc-14-1809-2020, 2020
Short summary
Short summary
In times of increasing computer power, atmospheric models that estimate the surface mass balance of the Greenland can be run with increasing resolution. However, at which resolution is the error no longer determined by the lacking resolution but by model shortcomings? In this manuscript we show that for the majority of the southern part of the Greenland Ice Sheet, our study area, a model resolution of 20 km is sufficient although finer model resolutions are still beneficial.
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020, https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Short summary
We present a reconstruction of historical (1950–2014) surface mass balance of the Greenland ice sheet using the Community Earth System Model (CESM2; ~111 km) to force a high-resolution regional climate model (RACMO2; ~11 km), which is further refined to 1 km spatial resolution. For the first time, an Earth-system-model-based product, assimilating no observations, can reconstruct realistic historical ice sheet surface mass balance as well as the mass loss acceleration that started in the 1990s.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Harry Zekollari, Philippe Huybrechts, Brice Noël, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, https://doi.org/10.5194/tc-11-805-2017, 2017
Short summary
Short summary
In this study the dynamics of the world’s northernmost ice cap are investigated with a 3-D ice flow model. Under 1961–1990 climatic conditions
an ice cap similar to the observed one is obtained, with comparable geometry and surface velocities. The southern part of the ice cap is very unstable,
and under early-21st-century climatic conditions this part of the ice cap fully disappears. In a projected warmer and wetter climate the ice cap will at
first steepen, before eventually disappearing.
Thomas J. Reerink, Willem Jan van de Berg, and Roderik S. W. van de Wal
Geosci. Model Dev., 9, 4111–4132, https://doi.org/10.5194/gmd-9-4111-2016, https://doi.org/10.5194/gmd-9-4111-2016, 2016
Short summary
Short summary
Ice sheets are part of the climate system and interact with the atmosphere and the ocean. OBLIMAP is a powerful tool to map climate fields between GCMs and ISMs (ice sheet models), which run on grids that differ in curvature, resolution and extent. OBLIMAP uses optimal aligned oblique projections, which minimize area distortions. OBLIMAP 2.0 allows for high-frequency embedded coupling and masked mapping. A fast search strategy realizes a huge performance gain and enables high-resolution mapping.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, https://doi.org/10.5194/tc-10-1933-2016, 2016
Short summary
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Willem Jan van de Berg and Brooke Medley
The Cryosphere, 10, 459–463, https://doi.org/10.5194/tc-10-459-2016, https://doi.org/10.5194/tc-10-459-2016, 2016
Short summary
Short summary
Regional climate models improve the spatial surface mass balance (SMB) patterns in Antarctica compared to reanalyses, but they deteriorate the representation of interannual variability in SMB. Hence, we implemented additional nudging in our regional climate model RACMO2. Using annual SMB observations of the Twaites drainage basin, Antarctica, we show that this nudging vastly improves the representation of interannual variability without significant deterioration of the modelled mean SMB fields.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum
The Cryosphere, 8, 1871–1883, https://doi.org/10.5194/tc-8-1871-2014, https://doi.org/10.5194/tc-8-1871-2014, 2014
J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg
The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014, https://doi.org/10.5194/tc-8-801-2014, 2014
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, https://doi.org/10.5194/tc-8-125-2014, 2014
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
Related subject area
Discipline: Snow | Subject: Antarctic
Dual-frequency radar observations of snowmelt processes on Antarctic perennial sea ice by CFOSCAT and ASCAT
A decade (2008–2017) of water stable isotope composition of precipitation at Concordia Station, East Antarctica
Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling
Firn air content changes on Antarctic ice shelves under three future warming scenarios
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-datasets and modelling analysis
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica
Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A
The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack
Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt
Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance
Representative surface snow density on the East Antarctic Plateau
Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations
Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica
Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica
Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning
Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica
Investigation of a wind-packing event in Queen Maud Land, Antarctica
Archival processes of the water stable isotope signal in East Antarctic ice cores
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024, https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on perennial Antarctic sea ice. Results show that since 2007, snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference in snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
EGUsphere, https://doi.org/10.5194/egusphere-2024-2111, https://doi.org/10.5194/egusphere-2024-2111, 2024
Short summary
Short summary
We use 3 sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined, and that it was generated by the interaction of air with steep topography. Our results show that kilometre scale models are useful tools for exploring extreme precipitation in this region, and that more observations of rainfall are needed.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144, https://doi.org/10.5194/tc-14-4135-2020, https://doi.org/10.5194/tc-14-4135-2020, 2020
Short summary
Short summary
The increase in Antarctic surface mass balance (SMB, precipitation vs. evaporation/sublimation) is projected to mitigate sea-level rise. Here we show that nearly half of this increase over the 20th century is attributed to stratospheric ozone depletion and ozone-depleting substance (ODS) emissions. Our results suggest that the phaseout of ODS by the Montreal Protocol, and the recovery of stratospheric ozone, will act to decrease the SMB over the 21st century and the mitigation of sea-level rise.
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Short summary
From 1 m snow profiles along a traverse on the East Antarctic Plateau, we calculated a representative surface snow density of 355 kg m−3 for this region with an error less than 1.5 %.
This density is 10 % higher and density fluctuations seem to happen on smaller scales than climate model outputs suggest. Our study can help improve the parameterization of surface snow density in climate models to reduce the error in future sea level predictions.
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
Charles Amory
The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020, https://doi.org/10.5194/tc-14-1713-2020, 2020
Short summary
Short summary
This paper presents an assessment of drifting-snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected at two remote locations in coastal Adelie Land (East Antarctica) using second-generation IAV Engineering acoustic FlowCapt sensors. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Short summary
To study how snow accumulates in Antarctica, we analyze daily surface elevation recorded by an automatic laser scanner. We show that new snow often accumulates in thick patches covering a small fraction of the surface. Most patches are removed by erosion within weeks, implying that only a few contribute to the snowpack. This explains the heterogeneity on the surface and in the snowpack. These findings are important for surface mass and energy balance, photochemistry, and ice core interpretation.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Cited articles
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of saturation vapor pressure, J. Appl. Meteorol. Climatol., 35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. a
Amory, C., Trouvilliez, A., Gallée, H., Favier, V., Naaim-Bouvet, F., Genthon, C., Agosta, C., Piard, L., and Bellot, H.: Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica, The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, 2015. a
Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard, G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal variations in drag coefficient over a sastrugi-covered snowfield in coastal East Antarctica, Bound.-Lay. Meteorol., 164, 107–133, https://doi.org/10.1007/s10546-017-0242-5, 2017. a
Amory, C., Genthon, C., and Favier, V.: A drifting snow data set (2010–2018) from coastal Adelie Land, eastern Antarctica, Zenodo [data set], https://doi.org/10.5281/zenodo.3630496, 2020a. a
Amory, C., Genthon, C., and Favier, V.: A drifting snow data set (2010-2018) from coastal Adelie Land, Eastern Antarctica, Zenodo [data set], https://doi.org/10.5281/zenodo.3630497, 2020b. a, b
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a, b, c, d, e
Barral, H., Genthon, C., Trouvilliez, A., Brun, C., and Amory, C.: Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues, The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014, 2014. a
Bintanja, R.: The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259, https://doi.org/10.3189/1998AoG27-1-251-259, 1998. a, b
Bintanja, R.: Snowdrift sublimation in a katabatic wind region of the Antarctic ice sheet, J. Appl. Meteorol. Climatol., 40, 1952–1966, https://doi.org/10.1175/1520-0450(2001)040<1952:SSIAKW>2.0.CO;2, 2001. a
Bromwich, D. H., Guo, Z., Bai, L., and Chen, Q.-S.: Modeled Antarctic precipitation. Part I: Spatial and temporal variability, J. Climate, 17, 427–447, https://doi.org/10.1175/1520-0442(2004)017<0427:MAPPIS>2.0.CO;2, 2004. a
Budd, W. F.: The drifting of nonuniform snow particles, Studies in Antarctic meteorology, 9, 59–70, https://doi.org/10.1029/AR009p0059, 1966. a, b, c, d
CY45R1–Part IV, I. D.: Physical processes, IFS Documentation CY45R1, 2018. a
Déry, S. J. and Yau, M. K.: Simulation of blowing snow in the Canadian Arctic using a double-moment model, Bound.-Lay. Meteorol., 99, 297–316, https://doi.org/10.1023/A:1018965008049, 2001. a, b, c, d
Déry, S. J. and Yau, M. K.: Large-scale mass balance effects of blowing snow and surface sublimation, J. Geophys. Res.-Atmos., 107, ACL–8, https://doi.org/10.1029/2001JD001251, 2002. a, b
Déry, S. J., Taylor, P. A., and Xiao, J.: The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer, Bound.-Lay. Meteorol., 89, 251–283, https://doi.org/10.1023/A:1001712111718, 1998. a, b, c
ECMWF: IFS Documentation CY33R1 – Part IV: Physical Processes, 4, ECMWF, https://doi.org/10.21957/8o7vwlbdr, 2009. a
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Box, J. E., and Steffen, K.: Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation, The Cryosphere, 4, 511–527, https://doi.org/10.5194/tc-4-511-2010, 2010. a
Gadde, S. and van de Berg, W. J.: Monthly accumulated sublimation and yearly accumulated surface mass balance (SMB) components RACMO model simulations for Antarctica on 27 km grid for 2000–2012 (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.12509005, 2024. a
Gallée, H., Guyomarćh, G., and Brun, E.: Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties, Bound.-Lay. Meteorol., 99, 1–19, https://doi.org/10.1023/A:1018776422809, 2001. a, b, c, d
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., G., P., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gerber, F., Sharma, V., and Lehning, M.: Reproducibility dataset for CRYOWRF validation, EnviDat [data set], https://doi.org/10.16904/envidat.347, 2022. a
Greuell, W. and Konzelmann, T.: Numerical modelling of the energy balance and the englacial temperature of the Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m asl), Global Planet. Change, 9, 91–114, https://doi.org/10.1016/0921-8181(94)90010-8, 1994. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
King, J. C., Anderson, P. S., Smith, M. C., and Mobbs, S. D.: The surface energy and mass balance at Halley, Antarctica during winter, J. Geophys. Res.-Atmos., 101, 19119–19128, https://doi.org/10.1029/96JD01714, 1996. a
King, J. C., Anderson, P. S., and Mann, G. W.: The seasonal cycle of sublimation at Halley, Antarctica, J. Glaciol., 47, 1–8, https://doi.org/10.3189/172756501781832548, 2001. a
Kodama, Y., Wendler, G., and Gosink, J.: The effect of blowing snow on katabatic winds in Antarctica, Ann. Glaciol., 6, 59–62, https://doi.org/10.3189/1985AoG6-1-59-62, 1985. a
Kuipers Munneke, P., Van den Broeke, M., Lenaerts, J., Flanner, M., Gardner, A., and Van de Berg, W.: A new albedo parameterization for use in climate models over the Antarctic ice sheet, J. Geophys. Res.-Atmos., 116, D05114, https://doi.org/10.1029/2010JD015113, 2011. a
Lenaerts, J. T. M. and van den Broeke, M. R.: Modeling drifting snow in Antarctica with a regional climate model: 2. Results, J. Geophys. Res.-Atmos., 117, D05109, https://doi.org/10.1029/2010JD015419, 2012. a, b, c
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., van Meijgaard, E., van de Berg, W. J., Palm, S. P., and Rodrigo, J. S.: Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation, J. Geophys. Res.-Atmos., 117, D05108, https://doi.org/10.1029/2011JD016145, 2012. a, b, c
Lenaerts, J. T. M., Smeets, C. J. P. P., Nishimura, K., Eijkelboom, M., Boot, W., van den Broeke, M. R., and van de Berg, W. J.: Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation, The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014, 2014. a, b
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a
Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C., Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart, A., van Lipzig, N. P. M., van Meijgaard, E., Orr, A., Phillips, T., Webster, S., Simonsen, S. B., and Souverijns, N.: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates, The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, 2021. a
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018. a, b, c
Palm, S. P., Yang, Y., Spinhirne, J. D., and Marshak, A.: Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res.-Atmos., 116, D16123, https://doi.org/10.1029/2011JD015828, 2011. a
Pomeroy, J. W.: A process-based model of snow drifting, Ann. Glaciol., 13, 237–240, https://doi.org/10.3189/S0260305500007965, 1989. a
Pomeroy, J. W. and Male, D. H.: Steady-state suspension of snow, J. Hydrol., 136, 275–301, https://doi.org/10.1016/0022-1694(92)90015-N, 1992. a
Radok, U.: Snow drift, J. Glaciol., 19, 123–139, https://doi.org/10.3189/S0022143000215591, 1977. a, b
Scambos, T. A., Frezzotti, M., Haran, T., Bohlander, J., Lenaerts, J., Van Den Broeke, M., Jezek, K., Long, D., Urbini, S., Farness, K., Neumann, T., Albert, M., and Winther, J.-G.: Extent of low-accumulation'wind glaze'areas on the East Antarctic plateau: implications for continental ice mass balance, J. Glaciol., 58, 633–647, https://doi.org/10.3189/2012JoG11J232, 2012. a
Scarchilli, C., Frezzotti, M., Grigioni, P., Silvestri, L. D., Agnoletto, L., and Dolci, S.: Extraordinary blowing snow transport events in East Antarctica, Clim. Dynam., 34, 1195–1206, https://doi.org/10.1007/s00382-009-0601-0, 2010. a
Schmidt, R. A.: Sublimation of wind-transported snow: a model, vol. 90, Rocky Mountain Forest and Range Experiment Station, Forest Service, US …, 1972. a
Schmidt, R. A.: Vertical profiles of wind speed, snow concentration, and humidity in blowing snow, Bound.-Lay. Meteorol., 23, 223–246, https://doi.org/10.1007/BF00123299, 1982. a, b, c
Serreze, M. C. and Barry, R. G.: The Arctic climate system, Cambridge University Press, 2005. a
Thiery, W., Gorodetskaya, I. V., Bintanja, R., Van Lipzig, N. P. M., Van den Broeke, M. R., Reijmer, C. H., and Kuipers Munneke, P.: Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica, The Cryosphere, 6, 841–857, https://doi.org/10.5194/tc-6-841-2012, 2012. a
Thorpe, A. and Mason, B.: The evaporation of ice spheres and ice crystals, British J. Appl. Phys., 17, 541, https://doi.org/10.1088/0508-3443/17/4/316, 1966. a, b
Le Toumelin, L., Amory, C., Favier, V., Kittel, C., Hofer, S., Fettweis, X., Gallée, H., and Kayetha, V.: Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica, The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, 2021. a, b
Undén, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo Sánchez, F. J., G., C., Cuxart, J., Eerola, K., Fortelius, C., García-Moya, J. A., Antonio, J., Jones, C., Lenderink, G., McDonald, A., McGrath, R., Navascués, B., Woetman-Nielsen, N., Odegaard, V., Rodríguez, C., Ernesto, C., Rummukainen, M., Room, R., Sattler, K., Hansn Sass, B., Savijärvi, H., Wichers Schreur, B., Sigg, R., Han, T., and Tijm, A.: HIRLAM-5 scientific documentation, http://hdl.handle.net/20.500.11765/6323 (last access: 23 October 2024), 2002. a
van Dalum, C. T., van de Berg, W. J., Libois, Q., Picard, G., and van den Broeke, M. R.: A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2, Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, 2019. a, b
van Dalum, C. T., van de Berg, W. J., and van den Broeke, M. R.: Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3, The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, 2022. a, b
van den Broeke, M. and Bintanja, R.: The interaction of katabatic winds and the formation of blue-ice areas in East Antarctica, J. Glaciol., 41, 395–407, https://doi.org/10.3189/S0022143000016269, 1995. a
van den Broeke, M. and Van Lipzig, N.: Factors controlling the near-surface wind field in Antarctica, Mon. Weather Rev., 131, 733–743, 2003. a
van den Broeke, M. R., Reijmer, C. H., and van de Wal, R. S. W.: A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations, J. Glaciol., 50, 565–582, https://doi.org/10.3189/172756504781829756, 2004. a
van Meijgaard, E., van Ulft, L., Lenderink, G., de Roode, S. R., Wipfler, E. L., Boers, R., and van Timmermans, R. M. A.: Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe, KVR 054/12, KvR, https://library.wur.nl/WebQuery/wurpubs/427097 (last access: 23 October 2024), 2012. a
van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., Thomas, E. R., Turner, J., Wuite, J., Scambos, T. A., and van Meijgaard, E.: The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution, The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, 2016. a
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018. a, b, c, d, e, f
van Wessem, M. J., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Cook, A. J., van Ulft, L. H., and van Meijgaard, E.: Temperature and wind climate of the Antarctic Peninsula as simulated by a high-resolution regional atmospheric climate model, J. Climate, 28, 7306–7326, https://doi.org/10.1175/JCLI-D-15-0060.1, 2015. a
Vinokur, M.: On one-dimensional stretching functions for finite-difference calculations, J. Comput. Phys., 50, 215–234, https://doi.org/10.1016/0021-9991(83)90065-7, 1983. a
Short summary
Blowing-snow sublimation is the major loss term in the mass balance of Antarctica. In this study we update the blowing-snow representation in the Regional Atmospheric Climate Model (RACMO). With the updates, results compare well with observations from East Antarctica. Also, the continent-wide variation of blowing snow compares well with satellite observations. Hence, the updates provide a clear step forward in producing a physically sound and reliable estimate of the mass balance of Antarctica.
Blowing-snow sublimation is the major loss term in the mass balance of Antarctica. In this study...