Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-639-2023
https://doi.org/10.5194/tc-17-639-2023
Research article
 | 
08 Feb 2023
Research article |  | 08 Feb 2023

Wind conditions for snow cornice formation in a wind tunnel

Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang

Related authors

The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.0) Model Enables Fast Dynamic Downscaling to the Hectometer Scale
Dylan Stewart Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-16,https://doi.org/10.5194/gmd-2023-16, 2023
Revised manuscript under review for GMD
Short summary
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023,https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022,https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Impact of turbulence on aeolian particle entrainment: results from wind-tunnel experiments
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022,https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023,https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary
Stochastic analysis of micro-cone penetration tests in snow
Pyei Phyo Lin, Isabel Peinke, Pascal Hagenmuller, Matthias Wächter, M. Reza Rahimi Tabar, and Joachim Peinke
The Cryosphere, 16, 4811–4822, https://doi.org/10.5194/tc-16-4811-2022,https://doi.org/10.5194/tc-16-4811-2022, 2022
Short summary
A generalized photon-tracking approach to simulate spectral snow albedo and transmittance using X-ray microtomography and geometric optics
Theodore Letcher, Julie Parno, Zoe Courville, Lauren Farnsworth, and Jason Olivier
The Cryosphere, 16, 4343–4361, https://doi.org/10.5194/tc-16-4343-2022,https://doi.org/10.5194/tc-16-4343-2022, 2022
Short summary
Coherent backscatter enhancement in bistatic Ku- and X-band radar observations of dry snow
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022,https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Effect of snowfall on changes in relative seismic velocity measured by ambient noise correlation
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021,https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary

Cited articles

Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland, J. Glaciol., 52, 281–297, 2006. a
Clifton, A. and Lehning, M.: Improvement and validation of a snow saltation model using wind tunnel measurements, Earth Surf. Proc. Land., 33, 2156–2173, 2008. a
Clifton, A., Rüedi, J.-D., and Lehning, M.: Snow saltation threshold measurements in a drifting-snow wind tunnel, J. Glaciol., 52, 585–596, 2006. a, b
Crivelli, P., Paterna, E., Horender, S., and Lehning, M.: Quantifying particle numbers and mass flux in drifting snow, Bound.-Lay. Meteorol., 161, 519–542, https://doi.org/10.1007/s10546-016-0170-9, 2016. a, b
Eckerstorfer, M. and Christiansen, H. H.: Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006–2009, Geomorphology, 134, 186–196, https://doi.org/10.1016/j.geomorph.2011.07.001, 2011. a
Download
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.