Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5335-2023
https://doi.org/10.5194/tc-17-5335-2023
Research article
 | 
15 Dec 2023
Research article |  | 15 Dec 2023

A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea

Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris

Related authors

Buoy measurements of strong waves in ice amplitude modulation: a signature of complex physics governing waves in ice attenuation
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619,https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Developing a deep learning forecasting system for short-term and high-resolution prediction of sea ice concentration
Are Frode Kvanum, Cyril Palerme, Malte Müller, Jean Rabault, and Nick Hughes
EGUsphere, https://doi.org/10.5194/egusphere-2023-3107,https://doi.org/10.5194/egusphere-2023-3107, 2024
Short summary
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023,https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023,https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022,https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary

Related subject area

Discipline: Other | Subject: Freshwater Ice
Measurements of frazil ice flocs in rivers
Chuankang Pei, Jiaqi Yang, Yuntong She, and Mark Loewen
The Cryosphere, 18, 4177–4196, https://doi.org/10.5194/tc-18-4177-2024,https://doi.org/10.5194/tc-18-4177-2024, 2024
Short summary
Assessment of the impact of dam reservoirs on river ice cover – an example from the Carpathians (central Europe)
Maksymilian Fukś
The Cryosphere, 18, 2509–2529, https://doi.org/10.5194/tc-18-2509-2024,https://doi.org/10.5194/tc-18-2509-2024, 2024
Short summary
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024,https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023,https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648, https://doi.org/10.5194/tc-16-3635-2022,https://doi.org/10.5194/tc-16-3635-2022, 2022
Short summary

Cited articles

Akbari, V. and Brekke, C.: Iceberg Detection in Open and Ice-Infested Waters Using C-Band Polarimetric Synthetic Aperture Radar, IEEE T. Geosci. Remote, 56, 407–421, https://doi.org/10.1109/TGRS.2017.2748394, 2018. 
Anfinsen, S. N., Doulgeris, A. P., and Eltoft, T.: Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery, IEEE T. Geosci. Remote, 47, 3795–3809, https://doi.org/10.1109/TGRS.2009.2019269, 2009. 
Argenti, F., Lapini, A., Bianchi, T., and Alparone, L.: A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images, IEEE Geosci. Remote Sens. Mag., 1, 6–35, https://doi.org/10.1109/MGRS.2013.2277512, 2013. 
Bailey, J. and Marino, A.: Quad-Polarimetric Multi-Scale Analysis of Icebergs in ALOS-2 SAR Data: A Comparison between Icebergs in West and East Greenland, Remote Sensing, 12, 1864, https://doi.org/10.3390/rs12111864, 2020. 
Bailey, J., Marino, A., and Akbari, V.: Comparison of Target Detectors to Identify Icebergs in Quad-Polarimetric L-Band Synthetic Aperture Radar Data, Remote Sensing, 13, 1753, https://doi.org/10.3390/rs13091753, 2021. 
Download
Short summary
Icebergs in open water are a risk to maritime traffic. We have compared six different constant false alarm rate (CFAR) detectors on overlapping C- and L-band synthetic aperture radar (SAR) images for the detection of icebergs in open water, with a Sentinel-2 image used for validation. The results revealed that L-band gives a slight advantage over C-band, depending on which detector is used. Additionally, the accuracy of all detectors decreased rapidly as the iceberg size decreased.