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Abstract. In this study, we pursue two objectives: first, we
compare six different “constant false alarm rate” (CFAR) al-
gorithms for iceberg detection in SAR images, and second,
we investigate the effect of radar frequency by comparing the
detection performance at C- and L-band. The SAR images
were acquired over the Labrador Sea under melting condi-
tions. In an overlapping optical Sentinel-2 image, 492 ice-
bergs were identified in the area. They were used for an as-
sessment of the algorithms’ capabilities to accurately detect
them in the SAR images and for the determination of the
number of false alarms and missed detections. By testing the
detectors at varying probability of false alarm (PFA) levels,
the optimum PFA for each detector was found. Additionally,
we considered the effect of iceberg sizes in relation to image
resolution. The results showed that the overall highest accu-
racy was achieved by applying a log-normal CFAR detec-
tor to the L-band image (F score of 70.4 %), however, only
for a narrow range of PFA values. Three of the tested detec-
tors provided high F scores above 60 % over a wider range
of PFA values both at L- and C-band. Low F scores were
mainly caused by missed detections of small-sized (<60 m)
and medium-sized (60–120 m) icebergs, with approximately
20 %–40 % of the medium icebergs and 85 %–90 % of small
icebergs being missed by all detectors. The iDPolRAD de-
tector, which is sensitive to volume scattering, is less suitable
under melting conditions.

1 Introduction

Icebergs pose a serious threat to maritime traffic and offshore
installations in the Arctic and surrounding regions. As human
presence in these areas increases, it becomes more important
to develop improved methods for detecting, mapping, track-
ing, and predicting iceberg occurrences in real time and over
large areas.

Traditionally, iceberg detection in the Northwest Atlantic
has been conducted visually by observers on aircraft of the
International Ice Patrol. However, the increased availability
of data from satellite synthetic aperture radar (SAR) sensors
in the past decades has promoted a move towards automated
detection.

SAR is an active instrument that acquires images indepen-
dent of sunlight and cloud cover conditions. This makes it the
preferred sensor for high-latitude regions, where cloud cover
and a lack of daylight can hinder the use of optical images. In
a SAR image, the brightness of each pixel depends on the in-
tensity of the signal that is scattered back from the surface –
called the backscattering coefficient. Since different objects
exhibit different backscatter characteristics, it is possible to
identify targets in the SAR image by looking at the backscat-
ter variations. This identification is further aided by the fact
that the SAR sensor can transmit and receive radar pulses at
different polarizations, giving rise to additional information
about the objects.

However, SAR images can be more challenging to ana-
lyze compared to optical images for several reasons. Speckle
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noise, which occurs due to constructive and destructive inter-
ference in the radar signal, can make it difficult to identify
small features in SAR images. The side-looking geometry of
SAR sensors leads to a decrease of the backscattering coef-
ficients with increasing incidence angle, which is most ob-
vious over homogenous targets. A problem that often arises
is how to exactly make a distinction between the backscat-
ter intensity of icebergs and the scattering response of open
water or sea ice around them.

Despite these issues, SAR images have been widely used
for manual iceberg detection. The identification of icebergs
in SAR images typically relies on the fact that icebergs tend
to have a higher backscatter intensity than open water and
certain types of sea ice (Gill, 2001; Sandven et al., 2007;
Wesche and Dierking, 2012). In recent years, the develop-
ment of automated detection schemes has become more and
more important. Icebergs can be automatically detected by
using either segmentation (Kim et al., 2011; Tao et al., 2016a;
Akbari and Brekke, 2018; Karvonen et al., 2022) or global
thresholding approaches (Dierking and Wesche, 2014; Bar-
bat et al., 2019). The most common approach is the appli-
cation of adaptive thresholding techniques such as the con-
stant false alarm rate (CFAR) detector (Oliver and Quegan,
2004). CFAR detectors are especially valuable for wide-
swath SAR images, where large variations in incidence an-
gles make global thresholding techniques difficult to design.
Automatic iceberg detection with CFAR has been demon-
strated in the past for single-polarization (Power et al., 2001;
Gill, 2001) and for dual- and quad-polarization SAR (How-
ell et al., 2004; Marino et al., 2016, Zakharov et al., 2017).
Regional distributions of icebergs have been mapped using
this method, e.g., for Greenland (Buus-Hinkler et al., 2014).

SAR images acquired at C-band (4–8 GHz) are typically
employed in operational mapping, e.g. from the European
Sentinel-1 mission. Sentinel-1 offers a high revisit interval
with daily dual-polarization images over most of the Arctic
in its extra-wide swath (EW) mode. Through the Copernicus
program, Sentinel-1 images are available through a free and
open-data policy. The Sentinel-1 mission and its Canadian
equivalent, the RADARSAT Constellation Mission (RCM),
will continue for at least another decade and will likely be
followed by similar missions. C-band SAR is currently be-
ing used for iceberg monitoring by, e.g., the International Ice
Patrol (IIP) and the Danish Meteorological Institute (DMI).

In 2028, a new L-band (1–2 GHz) SAR mission from ESA,
called ROSE-L, is planned to be launched to supplement
the C-band Sentinel-1 mission. ROSE-L will also offer reg-
ular dual-pol images of the Arctic (Davidson et al., 2021).
Already in 2024, NASA and ISRO (Indian Space Research
Organization) plan to launch the NISAR (NASA-ISRO syn-
thetic aperture radar) mission with an L-band and an S-band
sensor as payload (Das et al., 2021). Although the inclina-
tion and left-looking image acquisition of NISAR limits its
coverage at 78.5◦ N, it could still be used for detecting ice-
bergs around Greenland and along the coast of Labrador and

Newfoundland. It is anticipated that the L-band data will
be a useful complement as the longer wavelengths pene-
trate deeper into snow and ice, revealing the structures un-
derneath (Dierking and Davidson, 2020), and additionally it
is expected that L-band will be less sensitive to sea surface
roughness and therefore will offer a higher contrast between
icebergs and sea ice, making detection easier.

Only a few studies on using L-band SAR for iceberg ob-
servations have been carried out in the past. Gray and Ar-
senault (1991) showed that icebergs cause time-delayed re-
flections due to internal scattering in airborne L-band SAR
images. Marino (2018) tested an iceberg detection algorithm
developed for C-band on L-band images with encouraging
results. Recently, a study on scattering mechanisms for ice-
bergs in quad-pol L-band SAR images was conducted by
Bailey and Marino (2020), and Bailey et al. (2021) later com-
pared various detectors applied on quad-, dual-, and single-
pol L-band SAR images. The studies mentioned above give
some indication of the dominant scattering mechanisms and
detection capabilities of icebergs at L-band. However, stud-
ies comparing C- and L-band for iceberg detection have not
been carried out to date, and there is still a need to better un-
derstand the benefits and limits of both C- and L-band data
and how different detectors perform on the two data types.

A significant challenge in using SAR for iceberg detec-
tion is validating the accuracy of detection algorithms. Many
studies rely on the information on observed icebergs col-
lected during field campaigns (Willis et al., 1996; Power et
al., 2001; Denbina and Collins, 2012) or on visual identifi-
cation of icebergs in SAR images by experts (Bailey et al.,
2021; Marino et al., 2016; Akbari and Brekke, 2018). Both
approaches have limitations. Using field observations of ice-
bergs results in a spatially limited validation dataset, while
expert interpretation of SAR images does not account for
icebergs that may be present but not visible in the SAR im-
age due to resolution or noise issues. Images from optical
remote sensing satellites offer an independent source of vali-
dation data but are limited to days with reduced cloud cover.
Another requirement is that optical and SAR images must
be acquired within a small time gap between them to avoid
icebergs having drifted over long distances between acquisi-
tions.

In this study, we compare six different CFAR detection al-
gorithms and apply them on an overlapping C- and L-band
image pair to study the effect of the frequency and tuning of
the algorithms on the detection accuracy. To ensure an accu-
rate comparison, we created a validation dataset using an op-
tical Sentinel-2 image, in which we manually accounted for
the iceberg drift occurring between the image acquisitions.
The detectors were then assessed not only on their ability to
accurately detect the verified icebergs but also on the number
of false detections they produced. The novelty of this work
is the consistent comparison between L- and C-band SAR
for iceberg detection. Additionally, by using Sentinel-2 data
as validation, it was possible to test the detection accuracy

The Cryosphere, 17, 5335–5355, 2023 https://doi.org/10.5194/tc-17-5335-2023



L. Færch et al.: A comparison of CFAR object detection algorithms 5337

as a function of iceberg size. Finally, one of the tested de-
tection algorithms was based on the Wishart likelihood ratio
test, which has not been applied before for iceberg detection.

The structure of the paper is as follows. In Sect. 2, a short
introduction to CFAR algorithms for iceberg detection is pro-
vided, followed by Sect. 3, which presents the data used, ex-
plains the method used for creating validation data, and out-
lines the implementation details of the iceberg detection al-
gorithms that we have tested. The paper proceeds with our
results in Sect. 4 and a discussion in Sect. 5. The paper ends
with a conclusion in Sect. 6.

2 Theory

The SAR backscatter intensity from an iceberg mainly arises
from surface- and volume-scattering (Power et al, 2001; Bai-
ley and Marino, 2020). These two scattering mechanisms are
influenced by several different parameters; some are target-
dependent such as iceberg geometry, temperature, surface
roughness, and structure (e.g., the presence of snow, firn, or
saline layers). Others are sensor-dependent such as incidence
angle, frequency, and polarization. Additionally, sensor lim-
itations such as resolution and the presence of speckle noise
further complicate image interpretations, as backscattering
returns from icebergs, which mostly cover only a few pix-
els, might be indistinguishable from intensity variations of
speckle. For operational applications, single- or dual-pol are
commonly used, but if quad-pol data are available, polarimet-
ric decomposition can be applied to aid image interpretation
(Dierking and Wesche, 2014; Zakharov et al., 2017; Bailey
et al., 2021).

It has been observed that icebergs covered by liquid wa-
ter or wet snow stand out as dark objects against a lighter
background of open water. However, in most cases, icebergs
exhibit higher backscatter intensities than open water (Power
et al., 2001; Wesche and Dierking, 2012). Icebergs are hence
typically visible in SAR images as bright spots compared
to the relatively darker ocean. Since the backscatter of open
water can be highly variable due to its dependence on lo-
cal wind conditions and incidence angle, global thresholding
techniques are insufficient to detect icebergs. Instead, adap-
tive methods utilizing the local contrast in backscatter be-
tween neighboring pixels are normally employed to distin-
guish between icebergs and open water.

2.1 CFAR iceberg detection

A CFAR detector is a type of adaptive thresholding algorithm
used to identify objects such as ships or icebergs in SAR im-
ages. The algorithm compares the intensity of each pixel un-
der test (PuT) to the local background clutter, and if the pixel
value exceeds a certain threshold, it is marked as an outlier.
Clusters of these outliers are assumed to represent objects
of interest. The threshold is determined based on the prob-

ability density function (PDF) of the local clutter, allowing
the CFAR detector to adapt to variations in the background
noise (Crisp, 2004).

Accurate CFAR detection thus relies on accurate model-
ing of the background clutter PDF in SAR images, which is
not an easy task. In practice, a handful of models are widely
used to estimate sea surface clutter, but their performance de-
pends on the actual clutter properties, which depend on radar
parameters such as frequency. A model that works very well
on C-band might prove inferior on L-band.

The K distribution is a PDF that has been widely used
to model sea surface clutter (Oliver and Quegan, 2004), and
CFAR algorithms based on the K distribution have been
used for ship and iceberg detection (Power et al., 2001;
Brekke and Anfinsen, 2011; Wesche and Dierking, 2012;
Liu, 2018). But due to the complexity of the K distribu-
tion, models based on simpler PDFs are also commonly used,
e.g., the log-normal distribution (Crisp, 2004; El-Darymli et
al., 2013) and gamma distribution (Gill, 2001; Crisp, 2004;
Buus-Hinkler et al., 2014; Tao et al., 2016b).

If the background clutter is accurately modeled, a thresh-
old can be set in such a way that the probability of falsely
triggering the detector – the probability of false alarm (PFA)
– is maintained at a constant level. However, in practice, there
can be discrepancies between the theoretical PFA and the ac-
tual false alarm rate due to various implementation details. If
the window over which the clutter parameters are estimated
is too small, it will likely cause the calculated PDF parame-
ters to be biased. If the window is too large, it is more likely
to cover nonhomogeneous clutter regions or capture neigh-
boring icebergs, which will contaminate the parameter es-
timation (Tao et al, 2016b). Additionally, CFAR algorithms
used for operational detections are often optimized to min-
imize the computational complexity, which can further de-
grade the performance. When testing CFAR algorithms for
operational monitoring, it is therefore of high importance to
inform about the true number of false alarms, e.g., by testing
the detector for an area without icebergs.

2.1.1 Merging of multiple bands

Most models used for estimating the clutter are based on
single-channel statistics. For multi-channel data, i.e., the case
where several polarizations are available, three distinct detec-
tion strategies can be used (Crisp, 2004). (1) The individual
channels can be combined into a new single channel, which is
then fed to a single-channel detector. This could be achieved
by calculating the SPAN (or total power) or by making a new
channel consisting of a sum of normalized intensities (Liu,
2015). But channel combinations can also be developed to
enhance the contrast between background and target before
applying the detector, e.g., by utilizing the polarimetric prop-
erties of the target which one wants to detect. One such ex-
ample is the intensity dual-pol ratio anomaly detector (iDPol-
RAD) suggested for iceberg detection (Marino et al., 2016).
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(2) Multi-dimensional detectors based on multivariate PDFs
can be applied directly to find outliers based on all channels
simultaneously. (3) The far most common approach is sim-
ply to apply a single-channel detector to each channel and
then combine the outputs of the resulting detections using
Boolean operations.

When merging the output from multiple single-band
CFAR detectors into a new channel, it needs to be considered
that the PFA of the combined channel will not be the same as
the PFA used on the individual bands. If we combine the out-
put from two CFAR filters using a Boolean AND operation,
the final product will contain fewer outliers than the num-
ber of outliers found by the individual detectors. Similarly, a
Boolean OR operation will result in more outliers.

For determination of the combined PFA, the multiplication
and addition rules for probabilities can be used.

If we have two detectors, e.g., one applied to the HH po-
larization and another to the HV polarization, and assuming
that the noise in the HH and HV channel is independent, then
the PFA after a Boolean AND operation becomes

PFA(HH and HV)= PFA(HH)PFA(HV) .

If the PFA for the HH and HV channels are equal, we can
calculate the PFA needed on the individual channels based
on the desired combined PFA as

PFA(HH)= PFA(HV)=
√

PFA(HH and HV).

Similarly, we can calculate the corrected PFA if we are using
a Boolean OR operation as

PFA(HH or HV)= PFA(HH)+PFA(HV)−PFA(HH)PFA(HV)

⇒ PFA(HH)= PFA(HV)= 1±
√

1−PFA(HH or HV) ,

choosing the smallest positive solution, which is also known
as the Šidák correction (Salkind, 2007).

This means that if we want a PFA of 10−6 after combin-
ing two detectors using an AND operation, the CFAR de-
tectors applied to the individual channels need to be adapted
by applying a PFA of

√
10−6

= 10−3. Similarly, if combin-
ing using a OR operation, we need an individual PFA of
1−

√
1− 10−6

≈ 0.5× 10−6.

3 Data and method

3.1 Data description

For this study, we selected a test area covering part of the
Labrador Sea because of the high density of icebergs in open
water and along the coast. This area is also of great inter-
est for operational iceberg charting and is regularly moni-
tored by the International Ice Patrol (Dierking, 2020). An
L-band SAR image was acquired by the PALSAR-2 sen-
sor on board the ALOS-2 satellite. Overlapping Sentinel-
1 C-band SAR, and Sentinel-2 optical images were found

and downloaded through the CREOtech Data and Informa-
tion Access Service (CREODIAS). All three images par-
tially overlapped and were acquired on the same day within
a few hours (Fig. 1). The ALOS-2 image was delivered in
a pre-processed wide beam mode and consisted of dual-
polarization HH and HV intensity channels. The Sentinel-
1 image was acquired in extra-wide swath mode (EW) and
contained dual-polarization HH and HV intensity channels.
The Sentinel-1 image was pre-processed using the Sentinel
Applications Platform (SNAP)1. Both SAR images were ac-
quired from similar look geometries, both at a descending
orbit and right looking. The optical Sentinel-2 image was
downloaded in level-1C format.

Visual inspection of the Sentinel-2 image revealed hun-
dreds of white objects floating in the open water and along
the coast. Although sea ice was spotted in the area 2 weeks
prior to the acquisition of the data used in this study, we ex-
pect that most of the objects in the area are icebergs, since
single sea ice floes generally tend to disintegrate faster in
open water than icebergs due to their smaller thickness

An overview of the data is shown in Table 1. Originally,
the ALOS-2 image was acquired at a 25 m pixel spacing, but
for the comparison between C- and L-band both SAR images
were resampled to a local polar stereographic coordinate sys-
tem with a 40 m pixel spacing. The resampling was carried
out using a nearest-neighbor interpolation to avoid averaging
pixel intensities. However, the SAR images did still have a
different equivalent number of looks (ENL), which should
be considered in the comparison.

Meteorological data from two nearby weather stations
were downloaded from the Meteorological Service of
Canada (Government of Canada, 2023). At both weather sta-
tions the data showed temperatures between 6–15 ◦C, and
wind levels between 1–5 m s−1 during the day the images
were acquired. The weather stations are also shown in Fig. 1.

A land mask was created from OpenStreetMap land poly-
gons (OpenStreetMap contributors, 2015). A buffer of 500 m
was added to the mask to avoid any issues with SAR layover
or bad geocoding.

3.2 CFAR detectors

Six different CFAR detectors were implemented and tested
for this study. Since we are working on dual-pol data, the fi-
nal detection needs to include the combination of the HH and
HV channels. The selected detectors cover all three detection
strategies outlined in Sect. 2. Three detectors were based on
combining results from single channels using Boolean logic
(method 3), namely the log-normal, gamma, and K detec-
tors. Another two detectors were based on transforming the
dual-pol data into a single channel which is better suited for
object detection (method 1). These were the normalized in-

1The processing steps were orbit file application, grd-border-
noise removal, thermal noise removal, calibration, and ellipsoid cor-
rection to 40 m pixel spacing.
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Figure 1. Overview of the area of interest and data used for the study. The outlines of the optical (red) and SAR (blue and orange) are shown
together with the location of the icebergs in the optical image (blue triangles). Meteorological data were downloaded from the weather
stations at Nain Airport (W1) and Kangiqsualujjuaq Airport (W2). The Sentinel-1 and ALOS-2 images are shown to the right. The SAR
images are color-coded: red – HV, green – HH, and blue – HH.

Table 1. Overview of the data used in the study. n/a – not applicable.

Sensor Format Acquisition
date/time

Tile(s)/orbit identifier Pixel
spacing

Bands ENL

Sentinel-2 L1C 4 July 2019
15:36:39

T20VNJ/R068
T20VNL/R068
T20VPJ/R068
T20VPK/R068
T20VPL/R068

10 m B2, B3, B4, B8 n/a

Sentinel-1 EW GRDH 4 July 2019
10:27:30

–/028068 40 m HH, HV 10.7a

ALOS-2 WBDR 4 July 2019
16:24:43

–/– 25 m HH, HV 15b

a Sentinel-1 Product Definition (Bourbigot et al., 2016). b ALOS-2 Product Format Description (JAXA, 2012).

tensity sum (NIS) and the iDPolRAD. Finally, a multidimen-
sional detector (method 2) based on the likelihood ratio test
statistic in the Wishart distribution was tested as well.

3.2.1 Log-normal CFAR

The first and most simple detector used was the log-normal
detector (Crisp, 2004; El-Darymli et al., 2013). In the log-
normal CFAR detector, it is assumed that the logarithmic
transformation from intensity to decibel, normally used for
visualizing SAR images, leads to near-Gaussian background
clutter. If this is valid, outliers can be detected by employing

simple Gaussian statistics, i.e., by comparing the PuT against
the average plus some multitude, k, of the standard deviation
of the background backscatter.

3.2.2 Gamma CFAR

The gamma detector is based on the fact that, under fully de-
veloped speckle, the multi-looked background clutter inten-
sity follows a gamma distribution (Oliver and Quegan, 2004;
Argenti et al., 2013). Here, the threshold for determining out-
liers can then be found from the average clutter intensity and
the number of looks, L, which is known.
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3.2.3 K CFAR

The gamma model only accounts for variation due to speckle,
but in real SAR images, it has been observed that the clut-
ter often exhibits variations in the backscatter in addition to
the speckle. These variations, called texture, are attributed
to spatial variation of intensity within the area of interest
(Oliver and Quegan, 2004; Anfinsen et al., 2009; Doulgeris
et al., 2011) and can in some cases falsely trigger a CFAR
detector, thus leading to a higher false alarm rate. To ac-
count for this total speckle variation, clutter models incor-
porating both speckle and texture have been suggested in the
past. The most well-known of these models is the K distri-
bution. Here, the PDF of the single-band L-looked intensity
signal, I , can be modeled using the mean intensity, µ, the
shape parameter (number of looks), L, and the order param-
eter, ν. The disadvantage of this PDF, which is a combination
of the gamma function, 0(z), and the Bessel function of the
second kind, Kn(x), is that it does not have any closed-form
solution. Therefore, a complex numerical integration must be
executed to calculate the appropriate threshold.

3.2.4 NIS CFAR

The theory behind the normalized intensity sum (NIS) de-
tector is closely related to the principle of the polarimetric
whitening filter (PWF) (Novak and Hesse, 1993; Lee and
Pottier, 2009). In its original application, the PWF creates
a new channel such that the standard deviation to mean ratio
is minimized. In the case of dual-polarization intensity data,
this new channel can be calculated as a sum of normalized
intensities (Liu, 2015) and is therefore referred to as NIS. If
we assume that the individual channels, HH, and HV, follow
a gamma distribution, the new channel, w, should also fol-
low a gamma distribution. As such, the CFAR detection for
the NIS can be carried out by feeding it into a gamma de-
tector. The method was initially developed for ship detection
but has also been tested for iceberg detection (Denbina and
Collins, 2014; Bailey et al., 2021).

3.2.5 iDPolRAD CFAR

The iDPolRAD was suggested by Marino et al. (2016)
specifically for detecting icebergs in sea ice. The detector is
based on the observation that icebergs often exhibit a higher
cross-polarization and depolarization ratio (cross- over co-
polarization) than thin sea ice and open water. This observa-
tion is attributed to the fact that radar signals have a larger
penetration depth into icebergs than into sea ice and open
water, which leads to volume scattering and multiple reflec-
tions from within the iceberg volume. This was utilized by
designing a detector that is sensitive to pixels with higher
cross-polarization and depolarization ratio than their back-
ground. Specifically, the algorithm merges the co- and cross-
pol channels into a new quantity that enhances the contrast

of pixels with a high volume scattering relative to their back-
ground. Icebergs can then be detected in this new quantity,
by either employing a global threshold or applying a CFAR
detector that is tuned to the PDF of the new quantity.

3.2.6 Wishart CFAR

The idea behind the Wishart detector is that, under fully de-
veloped speckle (Anfinsen et al., 2009; Argenti et al., 2013),
the complex amplitude signal of the backscatter follows a
circular zero-mean Gaussian distribution, which leads to the
complex polarimetric covariance matrix being Wishart dis-
tributed (Goodman, 1963; Conradsen et al., 2003). A test of
equality of two complex distributed covariance matrices was
suggested by Conradsen et al. (2003) for change detection
applications. A CFAR-like detector for edge detection using
this test statistic was used in Schou et al. (2003). There, two
blocks of equal size, separated by a spatial gap, were used
to detect edges in different orientations. This was done by
calculating the average covariance matrix for each rectan-
gle and then combining these two covariance matrices into a
new channelQ, which denotes the likelihood ratio test statis-
tic. An approximate distribution for Q is known, which can
be used to calculate a threshold that corresponds to a spe-
cific false alarm rate. The advantages are that this thresh-
old only depends on the block size and the dimensionality of
the covariance matrix (number of polarizations). Hence, the
threshold only needs to be calculated once per image, which
is equivalent to applying a global threshold to the entire Q
image. This theory can easily be extended to object detec-
tion applications, where a single multi-looked PuT is tested
against a larger background. The method is developed for
complex data where knowledge on the full covariance matrix
is required. But with minor changes the method also works
for intensity data (the block diagonal case in Conradsen et
al., 2003, and Schou et al., 2003), which will be used for this
study.

The main strength of the Wishart detector is that it is mul-
tidimensional and can be extended to quad-pol data, without
changing the mathematics behind the implementation. Al-
though a contrast enhancement technique based on the test
statistic was recently used for highlighting targets with re-
flection symmetry, suggesting that the method could be used
for ship detection (Connetable et al., 2022), this detector has
not been used for iceberg detection until now.

3.3 CFAR implementation details

All CFAR detectors were implemented using Python 3.8 with
the NumPy and Numba libraries (Harris et al., 2020; Lam et
al., 2015). Additionally, the SciPy library was used for cal-
culating the statistical parameters needed for the probability
density functions (Virtanen et al., 2020). Input and output op-
erations were implemented using the Rasterio library (Gillies
et al., 2013).
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Figure 2. CFAR sliding window configuration overlaid on the
Sentinel-2 image.

For the log-normal, gamma, and K detector, the detec-
tors were applied to the HH and HV channels individually.
The final outliers are then found by combining the outliers
from the two channels using a Boolean AND operation. The
AND operation was selected to minimize false detections due
to single-channel noise, e.g., in the form of speckle. Except
for the iDPolRAD detector, the other detectors were imple-
mented using the window design shown in Fig. 2. Here, a
guard area of 360 m ensures that icebergs shorter than 180 m
will always be excluded from the clutter estimation window
regardless of orientation. The window sizes were based on
the inspection of the Sentinel-2 image, in which 97 % of the
icebergs are shorter than 180 m. Icebergs that are longer than
180 m but shorter than 360 m will only partly contaminate the
clutter estimation, e.g., when the center of the window is lo-
cated at the iceberg edges. For sizes ≥ 360 m we found only
one iceberg in the Sentinel-2 image. The size of the outer
window of 520 m was selected as a trade-off between hav-
ing a high number of samples for parameter estimation while
avoiding capturing neighboring icebergs in the background
estimation.

The iDPolRAD detector was implemented using a test and
a training window of 3× 3 and 57× 57 pixels respectively.
These window sizes were chosen based on the suggestions
by Marino et al. (2016) and Soldal et al. (2019). In the orig-
inal paper (Marino et al., 2016), icebergs are detected us-
ing a Gaussian-based CFAR detector with an empirically set
threshold, since no analytical expression of the PDF exists
for the iDPolRAD transformation. However, this approach
is unsatisfactory for the comparison of different detectors in
this study. Instead, we have opted on using a method simi-
lar to Soldal et al. (2020). Here, a generalized gamma func-
tion proved to be a good fit for the distribution. But since
it is computationally very expensive to estimate the parame-
ters for this distribution locally, we decided to fit the general-
ized gamma distribution to the iDPolRAD image globally. To
avoid skewing the distribution, land was masked, and pixels
where the iDPolRAD was smaller than 0 and larger than 50

times the mean were excluded for the parameter estimation.
Our approach enables us to test the performance of the iD-
PolRAD detector at varying global thresholds, avoiding com-
putation times that are too long.

Also, the K detector is computationally expensive when
estimating the threshold locally. This is normally solved by
using approximations of the original PDF (Oliver and Que-
gan, 2004; Tunaley, 2010) or by estimating the order pa-
rameters regionally on larger image tiles (Liu, 2018). To
shorten the computation time for theK detector, we used pre-
computed look-up tables for the threshold (Brekke, 2009).
Threshold values corresponding to the desired PFA level and
the ENL of the image were calculated for 40 different values
of the order parameter ν on a linear interval between 1 and
20, corresponding to the observed range of ν for our data.
For values of ν larger than 20, the threshold does not change
significantly, since large ν values correspond with low tex-
ture. The order parameter ν could be calculated locally for
each pixel using the clutter estimation window above, using
the method of moments (MoM) as suggested by Wesche and
Dierking (2012). Based on this order parameter a suitable
threshold was selected from the look-up table for each PuT.

The NIS transformation was calculated by using the win-
dow in Fig. 2. Here the PuT intensities of the two channels
were normalized using the average of the clutter window and
then added yielding the normalized intensity sum. A gamma
CFAR detector was then applied to detect outliers in the NIS
channel. The gamma CFAR requires an estimate of the ENL,
which has changed after the transformation. The new ENL
was estimated from the mean-squared-over-variance ratio. To
avoid skewing the estimation of the ENL due to the presence
of outliers, pixels with a NIS above 2 times the median NIS
were excluded.

The Wishart detector was implemented according to
Schou et al. (2003) using the window configuration shown
in Fig. 2. Here, the covariance matrix of the PuT was com-
pared with the average covariance matrix of the background
clutter. Since the Wishart detector is based on a two-sided
test statistic, the CFAR filter will highlight both bright and
dark features. However, for this study we are only interested
in bright outliers, since we only found icebergs with bright
radar returns, so outliers that are darker than the mean of the
clutter window were removed.

Each of the 6 detectors was applied to the images 21
times, corresponding to 21 different PFA levels varying from
1× 10−21 to 1× 10−1 on both the Sentinel-1 and ALOS-2
image. Due to issues with numerical stability of the detectors,
it was not possible to test the filters at PFA levels smaller than
1× 10−21. The land mask mentioned earlier was applied to
the SAR images before CFAR detection to avoid false detec-
tions due to land. To limit the noise in the detections, identi-
fied objects covering only a single pixel were removed from
the results. Similarly, objects covering more than 500 pixels
were also removed from the dataset, since no objects near
that size were observed in the Sentinel-2 image, and hence it
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Table 2. Classification of icebergs in the area of interest.

Iceberg type Number of icebergs

Small (<60 m) 181
Medium (60–120 m) 175
Large (>120 m) 136

was assumed that outliers of that size were likely caused by
errors in the processing.

The code for the CFAR detectors has been made available
on GitHub to allow testing on other SAR images by fellow
researchers (Færch, 2023).

3.4 Validation data

In the Sentinel-2 image icebergs were identified by apply-
ing an N-Sigma CFAR detector to the sum of the high-
resolution bands: B2, B3, B4, and B8. Pixels brighter than the
mean background plus 4 times the standard deviations were
marked as possible icebergs. The results were then manu-
ally checked to remove artifacts from clouds and land, and a
few icebergs missed by the automatic detection were added.
A total of 492 icebergs were detected in the area of interest
(AOI) in the optical image. The sizes of the icebergs were
then extracted from the Sentinel-2 image, and the icebergs
were classified according to length (Table 2) using the WMO
nomenclature (Dierking, 2020), with the length being the ma-
jor axis of the icebergs. The average iceberg length was 84 m,
and 97 % of the icebergs were shorter than 180 m.

Since the optical and the SAR images were acquired at
different times, the locations of the icebergs change between
the images because ocean currents and wind cause the ice-
bergs to drift between acquisitions. To correct for this drift,
icebergs observed in the Sentinel-2 image were manually
matched to objects in the SAR images. This matching was
carried out in the geographic information system (GIS) ap-
plication QGIS 3.10.13, and the process was aided by the
fact that, on a large scale, icebergs arranged in clusters often
drift in similar directions and over a similar distance. Hence,
looking at the overall patterns of iceberg clusters across the
different images helps determine the drift of individual ice-
bergs. Using this approach, it was possible to create veri-
fied drift paths for 336 of the icebergs in the ALOS-2 image
and 270 of the icebergs in the Sentinel-1 image. The reason
why fewer icebergs could be manually matched between the
Sentinel-1 and Sentinel-2 image was the larger time differ-
ence of approximately 5 h between their acquisitions, com-
pared to only around 1 h difference between the ALOS-2 and
Sentinel-2 image. Additionally, a higher noise level of the
Sentinel-1 image made matching more difficult, especially
for smaller icebergs. The average drift distance was 489 m
between the ALOS-2 and Sentinel-2 acquisitions and 3953 m
between the Sentinel-2 and Sentinel-1 acquisitions. Most of

the icebergs that could not be matched with high confidence
between the SAR images and the optical image, were very
small and hence very difficult to visually identify in the SAR
images because of their lower resolution and the presence
of speckle noise. A linear interpolation method was used to
predict the expected drift paths of these icebergs (Fig. 3).
This linear interpolation method was tested on a subset of the
dataset (10 %) and shown to give an average distance error of
335 m for ALOS-2 and 1789 m for Sentinel-1.

A few bright objects in the SAR images that were covered
by clouds in the optical data were masked out from the SAR
images to avoid counting these as false detections. Similarly,
icebergs drifting into the AOI from outside were removed
manually from the analysis. Additionally, a single bright ob-
ject visible in both the ALOS-2 and Sentinel-1 image was
interpreted as a ship and removed from the analysis. The ob-
ject resembling a ship was also recognized in the Sentinel-
2 image, but an independent automatic identification system
confirming this observation could not be found.

Both the verified and expected drift paths were used to
validate automatic detections in the SAR images. Objects
detected by the CFAR algorithms within a search radius of
the expected or verified locations of icebergs were marked
as true positives (TPs). This search radius was set to 250 m
for the verified drift paths. For the interpolated expected drift
paths, the search radius was set equal to the average distance
error in the interpolation method: 335 m in the ALOS-2 im-
age and 1789 m in the Sentinel-1 image. If several objects
were detected within the search radius, only the nearest ob-
ject is counted as a true positive, and the rest is interpreted as
false positives. If no objects are detected in the search area,
it was marked as a false negative (FN). Objects that were not
within the search radius of any icebergs were marked as false
positives (FPs).

3.5 Post-processing

Three different performance measures were used to check
the performance of the different detectors. These were recall,
precision, and F score defined as

Recall=
TP

TP+FN

Precision=
TP

TP+FP

F score= 2
precision · recall
precision+ recall

.

As such, recall accounts for the probability of detecting the
validated icebergs, i.e., how many of the icebergs have been
detected. Precision is used to assess the probability of a de-
tected object being an iceberg. As the PFA level is increasing,
each detector is more likely to detect the verified icebergs but
also more likely to make false detections. The overall perfor-
mance of the detectors is thus a trade-off between these two
scores. For marine safety, for example, a missed detection is
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Figure 3. Subset of the AOI showing the matching between the optical and SAR data. Purple outline indicates areas removed by the land
mask. Several icebergs are visible in the Sentinel-2 RGB image (a). These icebergs have drifted since the Sentinel-1 image was acquired (b).
Verified drift paths (light blue) were manually created for icebergs that could be confidently identified in the SAR imagery. Expected drift
paths (dark red) were then created using linear interpolation the remaining icebergs (c).

more critical than a false detection. For evaluating the overall
performance of the detectors, we decided to evaluate missed
and false detections equally by using the F score.

4 Results

Recall and precision as a function of increasing PFA lev-
els are plotted in Figs. 4 and 5. For most of the detectors,
the shape of the recall function can be divided into two
phases. For small and intermediate PFA levels, the recall is
either constant or increasing steadily with increasing PFA.
For larger PFA levels, the recall increases more rapidly. The
first phase can be explained by the detection of a few new
icebergs for each lower threshold level, while in the sec-
ond phase, the rapid increase is likely triggered by speckle
or noise within our search radius. We will discuss this issue
more in detail in Sect. 5.2.

Comparing the recall for the two sensors, we found that
all six detectors behave very similarly when applied to the L-
and C-band images for low PFA levels, with the exception
being the log-normal detector, which show a higher recall
for the L-band image. At higher PFA levels the recall for
Sentinel-1 increases earlier and more strongly compared to
ALOS-2. For a PFA level of 0.1, all detectors in the Sentinel-
1 image detect 97 %–99 % of the icebergs, compared to only
79 %–97 % for ALOS-2 (but note that the probability of false
detections is very high; see Fig. 5). The NIS, Wishart, and
gamma detectors give the highest recall for both L- and C-
band, whereas K and log-normal detectors generally show a
poor recall for low to medium PFA levels.

Our results for the precision shown in Fig. 5 reveal that
most of the detectors have a constant or slightly decreas-
ing precision for small PFA levels. This trend is caused by
a small increase in the number of false positives for each

lower threshold level. With increasing PFA levels, the pre-
cision reaches a point where it starts to rapidly decrease to-
wards zero, corresponding with a large increase in the num-
ber of false positives coupled with only a small increase in
true positives. When the threshold becomes very low, inten-
sity variations due to speckle will start triggering the detector,
causing an increased number of false positives, which leads
to a rapid decrease of precision. When comparing the two
sensors we found a very similar performance for the gamma,
log-normal, and K detectors for C- and L-band. Especially
the log-normal and K detectors show a very high precision
over a wide range of smaller PFA values. This high preci-
sion at low PFA levels is mainly driven by the fact that these
detectors only detect a small number of large and bright ice-
bergs, with almost zero false positives. However, this also
means that these detectors have a high number of false neg-
atives, which is also evident when comparing the precision
(Fig. 4) with the recall (Fig. 5). The Wishart, NIS, and iD-
PolRAD all show lower precision at L-band compared to
C-band, suggesting noise in the L-band image is triggering
these detectors. Especially the iDPolRAD detector shows a
very large decrease in precision. This indicates that in our
dataset, more spots of strong backscattering in HV not caused
by icebergs occur at L-band than at C-band.

In general, high recall comes with low precision. This
makes sense, as there is an overlap between the intensity
backscatter distributions for open water and icebergs, and a
detector that captures more icebergs will therefore likewise
capture more spots of strong backscattering from the water
surface as well. The exception here is the iDPolRAD filter,
which for ALOS-2 shows very low precision, which suggests
that this detector is triggered more often by noise than the
other detectors.
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Figure 4. Recall – the probability of detecting the icebergs.

Figure 5. Precision – the probability of a detection being an iceberg.

The F score shown in Fig. 6 combines recall and preci-
sion, which makes an overall assessment of the different de-
tectors much easier. In general, most of the detectors show
poor F scores for very small PFA levels due to low recall
and for high PFA levels due to low precision. Between those
extremes the F score is at maximum, corresponding to a re-
gion where we obtain the optimum balance between missed
and false detections. However, the exact point of this opti-
mum PFA level is very different for the different detectors
and varies also between C- and L-band. The large differences
in the optimal PFA level for a given detector highlight the im-
portance of determining recall and precision at different PFA
levels.

Overall, the performance of iceberg detection accuracy
of Sentinel-1 and ALOS-2 is comparable, with each sensor

obtaining maximum F scores of around 60 %–70 % for all
detectors except for the iDPolRAD, which generally scores
lower. This issue is discussed in Sect. 5.

The K detector and the log-normal detector achieve their
maximum accuracy at a very narrow interval of PFA levels,
whereas the gamma, iDPolRAD, NIS, and Wishart generally
exhibit higher F score across a wide range of PFA levels. The
comparisons between the shapes of the F score as a function
of PFA reveal that there is no single detector achieving best
performance over the whole range of PFAs. Results obtained
at C- and L-band show that one detector may be optimal at
one frequency but another detector for the other frequency.
For some filters it is better to select a lower value of PFA;
for others a higher value leads to higher F scores. Neverthe-
less, Figs. 4, 5, and 6 are helpful in deciding which detector
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Figure 6. F score – the overall accuracy of the different detectors as a function of the PFA.

to use for a given PFA and radar band. Below, we include
additional criteria that should be considered in the selection
of a specific filter. It must be admitted, however, that the ac-
curacy of detection is still too low for an unsupervised map-
ping of iceberg positions to be used for navigation. Further
experiments with different modes of SAR images and combi-
nations of images acquired simultaneously at different radar
frequencies are required.

For each of the detectors, results from the optimal con-
figuration, i.e., the PFA level that resulted in the highest F
score, were extracted. The total numbers of false negatives,
false positives, and true positives are shown in Table 3 for
Sentinel-1 and in Table 4 for ALOS-2. For Sentinel-1, the
Wishart detector obtained the highest number of true pos-
itives and the smallest number of false negatives, and for
ALOS-2 this was obtained by the log-normal detector. For
C-band, the smallest number of false positives was achieved
by the log-normal detector and for L-band by theK detector,
but with the log-normal detector showing only a single ad-
ditional false positive. It is worth noting that the number of
false negatives is almost as large as of the true positives for
all detectors, which means that almost half of the icebergs are
missed by all the detection algorithms. To investigate why so
many icebergs are missed, we have added the detection ac-
curacy for various iceberg sizes below.

Of the 492 icebergs used in the study, 181 are classified
as small, 175 as medium, and 136 as large (Table 2). For
each of the detectors, the optimum PFA value was chosen
to determine the absolute number of detected icebergs as a
function of iceberg size for Sentinel-1 (Table 5) and ALOS-
2 (Table 6). The results clearly demonstrate the considerable
increase of detection rates for larger icebergs and hence the
influence of the effective spatial resolution of the SAR im-
ages. For small icebergs, detection rates are extremely low,

emphasizing the need for employing SAR systems which ac-
quire images with high spatial resolutions on the order of
10 m (while at the same time keeping a large swath width).
As icebergs become smaller than the resolution limit of the
sensors, most icebergs are no longer separable from the back-
ground clutter. A few small icebergs are still detected, which
might be due to their orientation or geometry giving rise to a
strong backscattering into the direction of the SAR antenna.

The execution time for object detection is an important
issue in operational iceberg mapping. Therefore, we deter-
mined it for the six detectors. Each detector was run at a PFA
level of 1× 10−12, and the execution time was tested both
on a small subset of 1000× 1000 pixels and on the whole
Sentinel-1 EW scene. The small subset covered an area con-
taining only water and icebergs, but for the whole Sentinel-1
EW scene, about 10 % of the image was masked as being
land before applying the detectors – leaving approximately
110× 106 pixels to be analyzed. The test was carried out on
a 64 bit PC, equipped with an i7 processor at 2.60 GHz and
32.0 GB RAM. Four detectors could be run on a full Sentinel-
1 EW scene in less than a minute, making them well suited
for operational applications. For the K detector, the execu-
tion time was 76 s, but around 20 s is attributed to the look-
up table calculation, which can be carried out once and after-
wards be re-used in operational systems.

The performance of the different detectors was further as-
sessed by visualizing the results on subsets of the SAR im-
ages, which are shown in Figs. 7 and 8 for Sentinel-1 and
ALOS-2, respectively.

The subset covers an area containing several icebergs
grounded along the coast of Labrador, as well as several ice-
bergs floating in the open water. Objects identified with the
various detectors are marked on the figures, with green trian-
gles denoting true positives (TPs), yellow squares false neg-
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Table 3. Sentinel-1. Number of false negatives (FNs), false positives (FPs), and true positives (TPs) for each of the detectors at the PFA level
resulting in the highest F score. Bold type indicates the best score.

Gamma iDPolRAD K Log-normal NIS Wishart
(1× 10−19) (1× 10−10) (1× 10−4) (1× 10−5) (1× 10−13) (1× 10−20)

FN 254 299 253 261 219 216
FP 32 74 49 24 65 70
TP 238 193 239 231 273 276

Table 4. ALOS-2. Number of false negatives (FNs), false positives (FPs), and true positives (TPs) for each of the detectors at the PFA level
resulting in the highest F score. Bold type indicates the best score.

Gamma iDPolRAD K Log-normal NIS Wishart
(1× 10−14) (1× 10−16) (1× 10−4) (1× 10−7) (1× 10−21) (1× 10−18)

FN 230 285 255 201 217 215
FP 84 261 43 44 111 124
TP 262 207 237 291 275 277

atives (FNs), and red circles false positives (FPs). The same
subset is shown for Sentinel-1 and ALOS-2 images, but due
to the different acquisition times, the position of some ice-
bergs has changed between the two images. Both images
were acquired in ScanSAR mode, and the subsets cover the
border between two subswaths, which gives rise to a diagonal
line with a different signal-to-noise ratio (SNR) on each side.
This is seen in the top left corner of the Sentinel-1 image and
through the center of the ALOS-2 image. In the Sentinel-1
image, variations of the sea clutter are visible as brightness
differences in the open water. In the ALOS-2 image bright
artifacts occur in the water, likely caused by range and az-
imuth ambiguities from the processing. The high density of
icebergs, various clutter states, and image artifacts make this
subset well suited to illustrate the advantages and disadvan-
tages of the various detectors.

Figure 7 reveals that the gamma, log-normal, and K de-
tectors all behave similarly, with a limited number of false
positives, and an approximately equal number of true pos-
itives and false negatives. The NIS and Wishart detectors
both show a lower number of false negatives along the coast
in the top left of the image but also show a higher num-
ber of false positives in the top center of the image. These
false detections appear to be caused by linear features in the
open water, possibly some sort of ocean waves, which trig-
gers false detections. With the iDPolRAD we obtained many
false positives along the boundary between the subswaths.
This area is also characterized by increased levels of noise in
the HV-band (red color), which may falsely trigger the detec-
tor. Additionally, the iDPolRAD detector also shows many
missed detections compared with the other detectors, espe-
cially along the coast in the top left corner of the subset.

For the ALOS-2 image in Fig. 8, we found a very similar
performance for the log-normal and K detectors. Both show

a low number of false positives, whereas more false posi-
tives are obtained with the gamma, NIS, and Wishart detec-
tors along the diagonal subswath boundary through the cen-
ter of the image. These three detectors also identified an in-
creased number of false positives in the bottom of the image,
which appear to be caused by azimuth ambiguities. As in the
Sentinel-1 image, the iDPolRAD shows the highest number
of false positives.

4.1 Summary

The highest F score (70.4 %) was achieved by the log-normal
detector on the ALOS-2 image. Besides this detector, the
performance of the different methods for iceberg detection
is similar on C- and L-band SAR images, with maximum
f scores around 60 %–65 %. However, we note that we had
data available only for a case study of icebergs in open wa-
ter under low wind speeds and melting conditions. Hence,
further comparisons between L- and C-band may show that
SAR images acquired at a particular frequency should be
used for conditions not investigated here.

When comparing the results for the F score as a function
of PFA obtained for the investigated detectors, we found that
all are suitable for use considering individual limits, with the
exception of the iDPolRAD detector, which can be related
to the melting conditions (see Sect. 5). The advantage of the
gamma, NIS, and Wishart detectors provides high F scores
over a larger range of small PFA values. In wider range of
low PFA levels we found an almost constant F score also
for the iDPolRAD. The log-normal and K detectors showed
a narrow maximum of the F score at larger levels of the
PFA, which means that the thresholds for the optimal PFA
are more difficult to fix beforehand. Moreover, according to
our results, they differ between C- and L-band. We expect
that the position of the maximum F score on the PFA axis
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Table 5. Sentinel-1. Percentage of detected icebergs for each of the detectors at the PFA level resulting in the highest F score. Bold type
indicates the highest detection rate.

Icebergs N Gamma iDPolRAD K Log-normal NIS Wishart
(1× 10−9) (1× 10−10) (1× 10−2) (1× 10−2) (1× 10−13) (1× 10−20)

Small 181 6.6 % 5.0 % 6.6 % 6.6 % 11.6 % 13.3 %
Medium 175 57.7 % 40.6 % 58.9 % 56.0 % 70.3 % 69.7 %
Large 136 91.9 % 83.1 % 91.2 % 89.0 % 94.9 % 95.6 %

Table 6. ALOS-2. Percentage of detected icebergs for each of the detectors at the PFA level resulting in the highest F score. Bold type
indicates the highest detection rate.

Icebergs N Gamma iDPolRAD K Log-normal NIS Wishart
(1× 10−7) (1× 10−16) (1× 10−2) (1× 10−4) (1× 10−21) (1× 10−18)

Small 181 10.5 % 5.5 % 7.7 % 15.5 % 9.9 % 11.0 %
Medium 175 65.1 % 48.6 % 57.1 % 80.6 % 73.1 % 72.0 %
Large 136 94.9 % 82.4 % 90.4 % 89.7 % 94.9 % 96.3 %

may also depend on the specific conditions (freezing, melt-
ing, rough or smooth water, and ice surface).

Our results of the detectability as a function of iceberg size
shows that as many as 20 %–40 % of the medium icebergs
(60–120 m) are not found using the detection methods tested
here, even though the pixel spacing of the images used is of
40 m. This indicates that many medium-sized icebergs might
be missed in operational charting.

5 Discussion

5.1 Factors influencing the accuracy of detection rates

For verifying the iceberg detections in the SAR images based
on matches with icebergs identified in the Sentinel-2 image,
we had to consider the drift of the icebergs between the times
of acquisitions of the different images as explained above.
Larger icebergs could be identified more easily in all images.
For those icebergs, we used the direct displacement between
the respective SAR image and the Sentinel-2 image as drift
vectors. For icebergs shorter than 50 m, which were more dif-
ficult to match between the optical and the radar images, we
estimated a drift path based on an interpolation between ad-
jacent drift vectors from larger icebergs. The interpolation
builds on the assumption that the smaller icebergs maintain
the same heading and speed as the neighboring larger ice-
bergs. This assumption might not always hold considering
that the forces from wind and currents on icebergs depend
on the cross-sections of their sails and keels (Wesche and
Dierking, 2016), which causes larger uncertainties of the drift
vectors, especially over large distances. Considering that the
drift field between the Sentinel-1 and the Sentinel-2 image
contains more interpolated drift paths and that the drift dis-
tance is larger, we may underestimate the performance of ice-

berg detection at C-band. In the future, more advanced drift
predictions could be used to limit this type of uncertainty.
Alternatively, having optical data acquired at the same time
as the SAR overpasses would avoid the need for advanced
drift correction. In our case, we also must take into account
that the ALOS-2 images were down-sampled, which means
that the identification of icebergs is made more difficult in
the L-band images.

Other factors that influence the results which we obtained
for missed and false detections are iceberg disintegration
(icebergs breaking into smaller fragments) and the occur-
rence of ghost reflections at L-band (Gray and Arsenault,
1991). As illustrated in Fig. 9, ghost reflections were visi-
ble in the ALOS-2 imagery as small secondary reflections
downrange of the main radar returns for some icebergs.

The study was carried out using only a single image pair,
due to the limited availability of overlapping C- and L-band
SAR and optical images. As such, the effect of different wind
conditions and sea states on the detection performance could
not be systematically investigated. However, based on the op-
tical image we identified a large number of icebergs, which
support the validity of the results under the conditions tested
here.

The ocean wind field derived from the Sentinel-1 image
used in the study shows that the wind speed at acquisition
time was low, between 2–8 m s−1. The time difference be-
tween the Sentinel-1 and ALOS-2 acquisitions is around 6 h.
Therefore, we examined ECMWF Reanalysis v5 (ERA5)
data, which revealed that the average daily wind speed for our
AOI was at around 6 m s−1. Since areas with low wind also
exhibit low ocean backscatter, there is a risk that the signal
for some areas becomes dominated by system noise rather
than the true backscatter. This, in turn, increases the risk of
false positives from the system noise. In our results this is
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Table 7. Execution times of the different detection algorithms. The speed test was done for a 1000× 1000-pixel subset of the Sentinel-1 EW
scene (left) and for the full Sentinel-1 EW image (right) of approximately 110× 106 pixels.

Algorithm Run time (1000× 1000 px) Run time (entire S1E W scene)

Log-normal 292 [ms] 41.3 [s]
Gamma 144 [ms] 20.1 [s]
K distribution* 2157 [ms] 76.0 [s]
iDPolRAD 1319 [ms] 181.4 [s]
NIS 185 [ms] 27.6 [s]
Wishart 174 [ms] 27.8 [s]

∗ For the K detector, calculation of the look-up table takes approximately 20 s.

recognized as a high number of false positives along sub-
swath transitions for both Sentinel-1 and ALOS-2 (Figs. 7–
8). For these cases, a higher wind speed, and thus higher
background backscatter from the ocean, might improve the
performance due to an increase in signal-to-noise ratio. In an
operational system, the number of false positives could also
be reduced by applying improved filtering and noise reduc-
tion techniques in the pre-processing of images. This could,
for example, be achieved using the methods suggested by
Park et al. (2019) or Yang et al. (2021), which have shown
promising results. However, these methods need to be inves-
tigated in detail to ensure that the noise removal algorithms
do not affect point targets and as such degrade iceberg detec-
tion.

For future work, it is of great interest to investigate how
various detectors perform under varying wind and temper-
ature conditions and to consider different radar frequencies
and polarizations. It is expected that L-band SAR is less sen-
sitive to sea surface roughness than C-band, and hence L-
band should in theory be better suited for iceberg detection
under rough wind conditions (Dierking and Davidson, 2020).
Increasing wind also may increase the variation of backscat-
tering (affecting the image texture), which could have the
positive effect of increasing the accuracy for the K detector.
Similarly, increasing wind conditions might lead to worse
performance for the detectors based on the gamma distri-
bution, i.e., the gamma, NIS, and Wishart detectors. Colder
temperatures are also expected to affect the results, with
freezing conditions likely giving rise to more volume scatter-
ing from the icebergs, which might lead to a higher detection
rate by, for example, the iDPolRAD detector.

Our results showed that the detection rate decreased
rapidly as the iceberg size decreased, and it seems unlikely
that the current ScanSAR image modes from Sentinel-1 and
ALOS-2 will be useful for the detection and mapping of
small icebergs unless better models for clutter estimation
are developed. As mentioned in Sect. 3.3, outliers cover-
ing only a single pixel were removed as these were often
caused by speckle noise, which would not have been neces-
sary had the detectors been able to accurately model the clut-
ter noise. However, we did not investigate the effects of the

multi-looking applied to the images, and it is worth consider-
ing in future studies whether using single-look images might
improve the detection accuracy for small icebergs consider-
ing the trade-off between noise and resolution. Regardless of
these considerations, SAR data with a higher spatial resolu-
tion will likely improve the detection accuracy for smaller
icebergs in the future.

5.2 Interpretation of results for the recall

As mentioned earlier, the rapid increase in recall with in-
creasing PFA may be caused by the way we match icebergs
between the optical and the radar image. To account for
uncertainties, we define a search radius in the radar image
around the expected position of an iceberg identified in the
optical image, based on its estimated drift path. Especially
for the interpolated drift vectors, this search radius is large
(Sect. 3.4). So as the PFA level increases, the detectors will
be more and more triggered by speckle or other radar inten-
sity variations (e.g., due to strong reflections from a rough
water surface) within the search radius. Since the search ra-
dius is larger for Sentinel-1, and Sentinel-1 also has a lower
ENL, and hence higher variance of the speckle, we expect
that this issue will be more obvious for Sentinel-1 compared
to ALOS-2, which may explain the sudden large increase in
recall for Sentinel-1. As the number of false detections in-
creases inside the search circle, it will also increase outside,
which in turn will lead to a sharp decrease in precision. Both
effects determine the shape of the F score curves shown in
Fig. 6.

5.3 Interpreting the results of different detectors

The different detectors show a maximum of the F score at
different PFA levels: the NIS, gamma, and Wishart detectors
at very low PFA levels and the K and log-normal detectors
at higher PFA levels. Looking at the recall (Fig. 4) and preci-
sion (Fig. 5), we see that the K and log-normal detectors are
generally less sensitive to both icebergs and noise (late in-
crease in recall and late decrease in precision). We found that
the different detectors performed similarly for the two SAR
sensors, except for the log-normal detector, which showed a
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Figure 7. Detections for the six detectors for a subset of the C-band Sentinel-1 image. Green circles: true positives. Yellow squares: false
negatives. Red triangles: false positives. HV in red channel, HH in green and blue channel. The background SAR composite is color-coded:
red – HV, green – HH, blue – HH.

higher F score for L-band than for C-band. This could in-
dicate that the model of radar intensity variations due to sea
clutter used in the log-normal detector is more accurate at
L-band than at C-band at least for the sea states that were
represented in our dataset.

The similar overall performance of the gamma, NIS, and
Wishart detectors is a consequence of the design of these
detectors. All three assume that the noise in the HH and
HV channels follows a gamma distribution. The NIS detec-
tor finds outliers in the linear combination of the normalized
intensities at HH and HV polarization. The Wishart detec-
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Figure 8. Detections for the six detectors for a subset the L-band ALOS-2 image. Green circles: true positives. Yellow squares: false
negatives. Red triangles: false positives. HV in red channel, HH in green and blue channel. The background SAR composite is color-coded:
red – HV, green – HH, blue – HH.

tor is based on the multi-dimensional Wishart distribution
in which the contributions of the different polarizations are
considered. And the gamma detector find outliers in the HH
and HV bands independently and highlights outliers visible
in both bands. Hence, all three detectors should be sensitive
to the same outliers, with some minor variations for targets

that show higher backscatter for only one of the polariza-
tions.

In general, the iDPolRAD detector shows only moderate
performance across all performance measures and for both
C- and L-band. The main weakness of the detector appears
to be its tendency to be triggered by the noise occurring
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Figure 9. Example of the internal ghost reflections. Six icebergs are marked in the Sentinel-2 image (a), and in the ALOS-2 image (b).
Iceberg numbers 2, 5, and 6 show two distinct reflections, with an initial bright reflection followed by a reflection further downrange. The
secondary reflection is typically dimmer and often dominated by HV scattering (red). The look direction of the ALOS-2 satellite is marked
by the arrow.

along the subswath boundaries. However, these false detec-
tions could theoretically be filtered in the post-processing.
The reason we did not apply a filter like this for our study
was possible complications a filter like this might add; for
example, a subswath filter might remove some true positives.

Another weakness of the iDPolRAD detector is its sensi-
tivity to melting conditions. Melting at the surface of icebergs
causes a considerable decrease of the penetration depth of the
SAR signal at both L- and C-band, hence reducing the vol-
ume scattering component. The presence of the latter is the
major criterion for separating icebergs from the background
dominated by surface scattering. Additionally, since the ice-
bergs used in this study have drifted far from their calving
areas, they may have turned over underway, causing the for-
mation of salty ice layers on the icebergs’ surface, which also
leads to a decrease of volume scattering. The detector should
hence only be applied under freezing conditions and close to
calving sites, where rolling-over is less probable.

5.4 Sensitivity of F score to changes of PFA

The main strength of using the F score is that it reveals
how changes in PFA influence the accuracy of detection. We
clearly demonstrated that some detectors are quite sensitive
to small changes in PFA level, whereas others are quite sta-
ble under varying PFA levels (Fig. 6). Normally, detectors are
compared at similar PFA levels because it is assumed that the
PFA is representative of the actual false alarm rate, but due
to various implementation details or inaccurate assumptions
as mentioned earlier, this might not always be the case. Our
results showed that the NIS, gamma, and Wishart detectors
obtain a high accuracy across a wide range of PFA levels.
Similarly, the log-normal detector obtained a high F score
for a wide range of PFA levels for the ALOS-2 data. But K

detector (and the log-normal detector applied to C-band) ob-
tained a high accuracy only for a narrow range of PFA values.
This could indicate that these distributions are ill-suited for
fitting variations of the sea surface clutter in the tail of the
distribution so that small changes in PFA level result in large
changes in the cut-off threshold for determining whether pix-
els belong to the background or iceberg class. However, more
work is required to confirm this. Nevertheless, our results un-
derline the importance of looking at a broad range of PFA
levels instead of evaluating all the detection algorithms at one
fixed PFA level.

6 Conclusion

In this paper, we have compared the performance of six dif-
ferent CFAR detectors for iceberg detection in both a C-
band Sentinel-1 SAR image and a L-band ALOS-2 SAR
image. Both images were acquired over the same region of
the Labrador Sea and were acquired in wide-swath dual-
polarization (HH, HV) mode. A total of 492 icebergs were
visually identified in the study area, using an overlapping
Sentinel-2 image for validation. The performance of the de-
tectors was assessed by counting the number of false posi-
tives, true positives, and false negatives and calculating the
corresponding recall, precision, and F score. Each detector
was tested at varying PFA levels, making it possible to as-
sess the performance of the detectors as a function of the PFA
level. Additionally, the results for the PFA level that gave the
highest F score were analyzed to investigate the detection
rate for icebergs at varying sizes.

Comparing the individual detection algorithms on C- and
L-band revealed no large differences, except for the iDPol-
RAD detector, which showed a higher F score on C-band,
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and the log-normal detector, which showed a higher F score
on L-band. This shows that not all detectors tested on C-band
imagery can be applied to L-band imagery with the same ex-
pected results.

Overall, the highest accuracy was obtained by applying
a log-normal CFAR detector to the ALOS-2 L-band image,
which gave an F score of 70.4 %. In general, the gamma,
NIS, and Wishart detectors all gave F scores above 62 %
for both C- and L-band. Additionally, these three detectors
were shown to be very stable to changes in the PFA level.
The K detector resulted in F scores comparable with the
other detectors but was also shown to be very sensitive to
tuning of the PFA level. A similar result was obtained by the
log-normal detector applied to the C-band image. A detec-
tor developed for iceberg detection in sea ice, the iDPolRAD
detector, showed only moderate performance for icebergs in
open water – possibly due to the high temperatures in the
study area.

Three different methods were tested for merging the dual-
channel HH/HV images for CFAR detection. But the meth-
ods used did not appear to give rise to any significant dif-
ferences, with similar performance for the gamma, NIS, and
Wishart detectors.

Only 10 %–15 % of the icebergs shorter than 60 m could
be detected in the dataset, suggesting that wide-swath SAR
images at both C- and L-band are insufficient for detect-
ing small icebergs. Additionally, between 20 %–50 % of the
medium icebergs (60–120 m) and 5 %–20 % of the large ice-
bergs (>120 m) were missed by the detectors. This shows
that a large part of icebergs that are 1.5–3 times size of a sin-
gle pixel are not being detected, suggesting a risk of under-
estimating iceberg conditions by operational iceberg charting
services.

Each of the detectors obtained their highest F score at dif-
ferent PFA levels. This suggests that comparing detectors at
the same PFA level will give inaccurate results. The results
also revealed that some detectors were sensitive to variations
in PFA level, while others proved more stable. This suggests
that the sensitive detectors should be used with care or un-
dergo manual tuning for optimum results. We therefore rec-
ommend that the detectors with stable response to changing
PFA level, namely NIS, Wishart, and gamma, are used when
implementing an operational iceberg detection product.

L-bands appear to offer a slight improvement over C-
bands on the dataset in this study. We expect this improve-
ment to be even higher for cases with more wind, and we
encourage further investigations of the use of L-band SAR
data for detecting icebergs under varying wind conditions.
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