Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2829-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2829-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Yujia Qiu
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
University of Chinese Academy of Sciences, Beijing 100049, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Huadong Guo
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Related authors
No articles found.
Hong Zhang, Mingyang Song, Yinhaibin Ding, Yazhe Xie, Huadong Guo, Lu Xu, Ji Ge, Yafei Zhu, Shenghan Wang, Zihuan Guo, Zhe Wang, Haoxuan Duan, Lijun Zuo, and Wenjiang Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2026-24, https://doi.org/10.5194/essd-2026-24, 2026
Preprint under review for ESSD
Short summary
Short summary
Accurate rice farming data is vital for global food security. We created GlobalRice20, a global map of paddy rice at 20-meter resolution for 2015 and 2024. By utilizing satellite imagery and advanced processing to overcome cloud issues, this dataset fills a critical gap in agricultural monitoring. It provides a reliable baseline for analyzing food production trends and helps policymakers track progress toward the Sustainable Development Goal of Zero Hunger.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Wenxue Fu, Lei Tian, Yu Tao, Mingyang Li, and Huadong Guo
Earth Syst. Dynam., 14, 223–239, https://doi.org/10.5194/esd-14-223-2023, https://doi.org/10.5194/esd-14-223-2023, 2023
Short summary
Short summary
Climate change has been proven to be an indisputable fact and to be occurring at a faster rate in boreal forest areas. The results of this paper show that boreal forest coverage has shown an increasing trend in the past 3 decades, and the area of broad-leaved forests has increased more rapidly than that of coniferous forests. In addition, temperature rather than precipitation is the main climate factor that is driving change.
Yi-Ran Wang and Xiao-Ming Li
Earth Syst. Sci. Data, 13, 2723–2742, https://doi.org/10.5194/essd-13-2723-2021, https://doi.org/10.5194/essd-13-2723-2021, 2021
Short summary
Short summary
Sea ice cover is the most fundamental factor that indicates the underlying great changes in the Arctic. We propose novel sea ice cover data in high resolution of a few hundred meters by spaceborne synthetic aperture radar, which is more than 10 times that of the operational sea ice cover and concentration data. The method is based on a deep learning architecture of U-Net. We have been processing data acquired by Sentinel-1 since 2014 to obtain high-quality sea ice cover data in the Arctic.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Cited articles
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.:
Discriminating clear sky from clouds with MODIS, J. Geophys. Res.-Atmos., 103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998.
Alam, A. and Curry, J. A.:
Evolution of new ice and turbulent fluxes over freezing winter leads, J. Geophys. Res.-Oceans, 103, 15783–15802, https://doi.org/10.1029/98JC01188, 1998.
Alvarez, A.:
A model for the Artic mixed layer circulation under a summertime lead: Implications on the near-surface temperature maximum formation, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-233, in review, 2022.
Bhartia, P. K.:
OMI Algorithm Theoretical Basis Document, Volume II, OMI Ozone Products, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 2002.
Bhartia, P. K.: OMI/Aura TOMS-Like Ozone and Radiative Cloud Fraction L3 1 day 0.25 degree × 0.25 degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/OMI/DATA3002 (last access: 20 December 2022), 2012.
Bröhan, D. and Kaleschke, L.:
A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E, Remote Sens.-Basel, 6, 1451–1475, https://doi.org/10.3390/rs6021451, 2014.
Cavalieri, D. J. and Parkinson, C. L.:
Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.
CBAS: Data Access, CBAS [data set], http://www.sdgsat.ac.cn/, last access: 20 December 2022.
Copernicus: Open Access Hub, Copernicus [data set], https://scihub.copernicus.eu/dhus/#/home/, last access: 20 December 2022.
Corsini, G., Diani, M., and Walzel, T.:
Striping removal in MOS-B data, IEEE T. Geosci. Remote, 38, 1439–1446, https://doi.org/10.1109/36.843038, 2000.
European Space Agency (ESA): Sentinel-1 SAR User Guide, https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar, last access: 20 December 2022a.
Eurpean Space Agency (ESA):
Sentinel-2 MSI User Guide, https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi, last access: 20 December 2022b.
Fan, P., Pang, X., Zhao, X., Shokr, M., Lei, R., Qu, M., Ji, Q., and Ding, M.:
Sea ice surface temperature retrieval from Landsat 8/TIRS: Evaluation of five methods against in situ temperature records and MODIS IST in Arctic region, Remote Sens. Environ., 248, 111975, https://doi.org/10.1016/j.rse.2020.111975, 2020.
Gimbert, F., Jourdain, N. C., Marsan, D., Weiss, J., and Barnier, B.:
Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations, J. Geophys. Res.-Oceans, 117, C00J12, https://doi.org/10.1029/2011JC007633, 2012.
Guo, H., Liang, D., Chen, F., and Shirazi, Z.:
Innovative approaches to the Sustainable Development Goals using Big Earth Data, Big Earth Data, 5, 263–276, https://doi.org/10.1080/20964471.2021.1939989, 2021.
Guo, H., Dou, C., Chen, H., Liu, J., Fu, B., Li, X., Zou, Z., and Liang, D.:
SDGSAT-1: the world's first scientific satellite for sustainable development goals, Sci. Bull., 68, 34–38, https://doi.org/10.1016/j.scib.2022.12.014, 2022.
Hall, D. K. and Riggs, G.: MODIS/Terra Sea Ice Extent 5-min L2 Swath 1km, Version 61, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD29.061, (last access: 20 December 2022), 2021.
Hall, D. K., Riggs, G. A., Salomonson, V. V., Barton, J., Casey, K., Chien, J., DiGirolamo, N., Klein, A., Powell, H., and Tait, A.: Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms, NASA, Goddard Space Flight Center, Greenbelt, MD, USA, https://modis.gsfc.nasa.gov/data/atbd/atbd_mod10.pdf (last access: 20 December 2022), 2001.
Hall, D. K., Key, J. R., Casey, K. A., Riggs, G. A., and Cavalieri, D. J.:
Sea ice surface temperature product from MODIS, IEEE T. Geosci. Remote, 42, 1076–1087, https://doi.org/10.1109/TGRS.2004.825587, 2004.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.:
ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47 (last access: 20 December 2022), 2018.
Hoffman, J. P., Ackerman, S. A., Liu, Y., and Key, J. R.:
The detection and characterization of Arctic Sea ice leads with satellite imagers, Remote Sens.-Basel, 11, 521, https://doi.org/10.3390/rs11050521, 2019.
Hoffman, J. P., Ackerman, S. A., Liu, Y., Key, J. R., and McConnell, I. L.:
Application of a convolutional neural network for the detection of sea ice leads, Remote Sens.-Basel, 13, 4571, https://doi.org/10.3390/rs13224571, 2021.
Hoffman, J. P., Ackerman, S. A., Liu, Y., and Key, J. R.:
A 20-Year Climatology of Sea Ice Leads Detected in Infrared Satellite Imagery Using a Convolutional Neural Network, Remote Sens.-Basel, 14, 5763, https://doi.org/10.3390/rs14225763, 2022a.
Hoffman, J., Ackerman, S., Liu, Y., Key, J., and McConnell, I.:
MODIS Sea ice leads detections using a U-Net, Dryad [data set], https://doi.org/10.5061/dryad.79cnp5hz2, 2022b.
Hu, Y., Li, X.-M., Dou, C., Chen, F., Jia, G., Hu, Z., Xu, A., Ren, Y., Yan, L., Wang, N., and Cui, Z.:
Absolute radiometric calibration evaluation for Thermal Infrared Spectrometer (TIS) onboard SDGSAT-1 satellite [Unpublished manuscript], 2022.
Hu, Z., Zhu, M., Wang, Q., Su, X., and Chen, F.:
SDGSAT-1 TIS Prelaunch Radiometric Calibration and Performance, Remote Sens.-Basel, 14, 4543, https://doi.org/10.3390/rs14184543, 2022.
International Research Center of Big Data for Sustainable Development Goals (CBAS): SDGSAT-1 Data Users Handbook (Draft), CBAS, http://60.245.209.56/preview/20221125/c84c0b5d89984cd384ffa05dbb163d14.pdf (last access: 20 December 2022), 2022.
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., and Cristobal, J.:
Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data, IEEE Geosci. Remote S., 11, 1840–1843, https://doi.org/10.1109/LGRS.2014.2312032, 2014.
Key, J., Stone, R., Maslanik, J., and Ellefsen, E.:
The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale, Ann. Glaciol., 17, 227–232, https://doi.org/10.3189/S026030550001288X, 1993.
Key, J., Maslanik, J., and Ellefsen, E.:
The effects of sensor field-of-view on the geometrical characteristics of sea ice leads and implications for large-area heat flux estimates, Remote Sens. Environ., 48, 347–357, https://doi.org/10.1016/0034-4257(94)90009-4, 1994.
Key, J. R., Collins, J. B., Fowler, C., and Stone, R. S.:
High-latitude surface temperature estimates from thermal satellite data, Remote Sens. Environ., 61, 302–309, https://doi.org/10.1016/S0034-4257(97)89497-7, 1997.
Kwok, R.:
Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018), Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018.
Ledley, T. S.:
A coupled energy balance climate-sea ice model: Impact of sea ice and leads on climate, J. Geophys. Res.-Atmos., 93, 15919–15932, https://doi.org/10.1029/JD093iD12p15919, 1988.
Lee, S., Kim, H.-C., and Im, J.:
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data, The Cryosphere, 12, 1665–1679, https://doi.org/10.5194/tc-12-1665-2018, 2018.
Liang, Z., Pang, X., Ji, Q., Zhao, X., Li, G., and Chen, Y.:
An Entropy-Weighted Network for Polar Sea Ice Open Lead Detection From Sentinel-1 SAR Images, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2022.3169892, 2022.
Lindsay, R. and Rothrock, D.:
Arctic sea ice leads from advanced very high resolution radiometer images, J. Geophys. Res.-Oceans, 100, 4533–4544, https://doi.org/10.1029/94JC02393, 1995.
Liu, W., Li, J., Zhang, Y., Zhao, L., and Cheng, Q.:
Preflight radiometric calibration of TIS sensor onboard SDG-1 satellite and estimation of its LST retrieval ability, Remote Sens.-Basel, 13, 3242, https://doi.org/10.3390/rs13163242, 2021.
Lüpkes, C., Vihma, T., Birnbaum, G., and Wacker, U.:
Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night, Geophys. Res. Lett., 35, L03805, https://doi.org/10.1029/2007GL032461, 2008.
Marcq, S. and Weiss, J.:
Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012.
Maykut, G. A.:
Large-scale heat exchange and ice production in the central Arctic, J. Geophys. Res.-Oceans, 87, 7971–7984, https://doi.org/10.1029/JC087iC10p07971, 1982.
McIntire, T. J. and Simpson, J. J.:
Arctic sea ice, cloud, water, and lead classification using neural networks and 1.6-/spl mu/m data, IEEE T. Geosci. Remote, 40, 1956–1972, https://doi.org/10.1109/TGRS.2002.803728, 2002.
MODIS Characterization Support Team: MODIS Geolocation Fields Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD03.061 (last access: 20 December 2022), 2017.
Muchow, M., Schmitt, A. U., and Kaleschke, L.:
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images, The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, 2021.
Murashkin, D. and Spreen, G.: Sea ice leads detected from sentinel-1 SAR images, IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019, 174–177, https://doi.org/10.1109/IGARSS.2019.8898043, 2019.
Murashkin, D., Spreen, G., Huntemann, M., and Dierking, W.:
Method for detection of leads from Sentinel-1 SAR images, Ann. Glaciol., 59, 124–136, https://doi.org/10.1017/aog.2018.6, 2018.
Ólason, E., Rampal, P., and Dansereau, V.:
On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic, The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, 2021.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.:
Seasonal and regional manifestation of Arctic sea ice loss, J. Climate, 31, 4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018.
Otsu, N.:
A threshold selection method from gray-level histograms, IEEE T. Syst. Man Cyb., 9, 62–66, https://doi.org/10.1109/TSMC.1979.4310076, 1979.
Prabhakara, C. and Dalu, G.:
Remote sensing of the surface emissivity at 9 µm over the globe, J. Geophys. Res., 81, 3719–3724, https://doi.org/10.1029/JC081I021P03719, 1976.
Qu, M., Pang, X., Zhao, X., Zhang, J., Ji, Q., and Fan, P.:
Estimation of turbulent heat flux over leads using satellite thermal images, The Cryosphere, 13, 1565–1582, https://doi.org/10.5194/tc-13-1565-2019, 2019.
Qu, M., Pang, X., Zhao, X., Lei, R., Ji, Q., Liu, Y., and Chen, Y.:
Spring leads in the Beaufort Sea and its interannual trend using Terra/MODIS thermal imagery, Remote Sens. Environ., 256, 112342, https://doi.org/10.1016/j.rse.2021.112342, 2021.
Rampal, P., Weiss, J., and Marsan, D.:
Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007, J. Geophys. Res.-Oceans, 114, C05013, https://doi.org/10.1029/2008JC005066, 2009.
Reiser, F., Willmes, S., and Heinemann, G.:
A new algorithm for daily sea ice lead identification in the Arctic and Antarctic winter from thermal-infrared satellite imagery, Remote Sens.-Basel, 12, 1957, https://doi.org/10.3390/rs12121957, 2020.
Ridler, T. and Calvard, S.:
Picture thresholding using an iterative selection method, IEEE T. Syst. Man Cyb., 8, 630–632, https://doi.org/10.1109/TSMC.1978.4310039, 1978.
Röhrs, J. and Kaleschke, L.:
An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery, The Cryosphere, 6, 343–352, https://doi.org/10.5194/tc-6-343-2012, 2012.
Serreze, M. C. and Barry, R. G.:
Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Serreze, M. C. and Francis, J. A.:
The Arctic amplification debate, Climatic Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Steele, M., Dickinson, S., Zhang, J., and Lindsay, R. W.:
Seasonal ice loss in the Beaufort Sea: Toward synchrony and prediction, J. Geophys. Res.-Oceans, 120, 1118–1132, https://doi.org/10.1002/2014JC010247, 2015.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.:
The Arctic's rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1, 2012.
Thielke, L., Huntemann, M., Hendricks, S., Jutila, A., Ricker, R., and Spreen, G.:
Sea ice surface temperatures from helicopter-borne thermal infrared imaging during the MOSAiC expedition, Scientific Data, 9, 364, https://doi.org/10.1038/s41597-022-01461-9, 2022.
Tschudi, M., Curry, J., and Maslanik, J.:
Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA, J. Geophys. Res.-Oceans, 107, SHE 9-1–SHE 9-14, https://doi.org/10.1029/2000JC000541, 2002.
USGS: EarthExplorer, USGS [data set], https://earthexplorer.usgs.gov/, last access: 20 December 2022.
Vihma, T., Pirazzini, R., Fer, I., Renfrew, I. A., Sedlar, J., Tjernström, M., Lüpkes, C., Nygård, T., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.:
Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, 2014.
Wan, Z. and Li, Z.-L.:
A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE T. Geosci. Remote, 35, 980–996, https://doi.org/10.1109/36.602541, 1997.
Wang, Q., Shokr, M., Chen, S., Zheng, Z., Cheng, X., and Hui, F.:
Winter Sea-Ice Lead Detection in Arctic Using FY-3D MERSI-II Data, IEEE Geosci. Remote S., 19, 1–5, https://doi.org/10.1109/LGRS.2022.3223689, 2022.
Wang, Y., Holt, B., Erick Rogers, W., Thomson, J., and Shen, H. H.:
Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014, J. Geophys. Res.-Oceans, 121, 1502–1525, https://doi.org/10.1002/2015JC011349, 2016.
Wernecke, A. and Kaleschke, L.:
Lead detection in Arctic sea ice from CryoSat-2: quality assessment, lead area fraction and width distribution, The Cryosphere, 9, 1955–1968, https://doi.org/10.5194/tc-9-1955-2015, 2015.
Willmes, S. and Heinemann, G.:
Pan-Arctic lead detection from MODIS thermal infrared imagery, Ann. Glaciol., 56, 29–37, https://doi.org/10.3189/2015AoG69A615, 2015a.
Willmes, S. and Heinemann, G.:
Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003–2015, Remote Sens.-Basel, 8, 4, https://doi.org/10.3390/rs8010004, 2015b.
Yin, Z., Li, X., Ge, Y., Shang, C., Li, X., Du, Y., and Ling, F.:
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning, The Cryosphere, 15, 2835–2856, https://doi.org/10.5194/tc-15-2835-2021, 2021.
Zhang, Y., Cheng, X., Liu, J., and Hui, F.:
The potential of sea ice leads as a predictor for summer Arctic sea ice extent, The Cryosphere, 12, 3747–3757, https://doi.org/10.5194/tc-12-3747-2018, 2018.
Zhong, W., Jiang, M., Xu, K., and Jia, Y.:
Arctic Sea Ice Lead Detection from Chinese HY-2B Radar Altimeter Data, Remote Sens.-Basel, 15, 516, https://doi.org/10.3390/rs15020516, 2023.
Short summary
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate parameterization of Arctic leads. For the first time, we applied the 30 m resolution data from the Thermal Infrared Spectrometer (TIS) on the emerging SDGSAT-1 to detect Arctic leads. Validation with Sentinel-2 data shows high accuracy for the three TIS bands. Compared to MODIS, the TIS presents more narrow leads, demonstrating its great potential for observing previously unresolvable Arctic leads.
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate...