Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2811-2023
https://doi.org/10.5194/tc-17-2811-2023
Research article
 | 
13 Jul 2023
Research article |  | 13 Jul 2023

Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques

Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal

Related authors

GIS enabled thunderstorm forecasting system for one of the world’s hotspot region for severe thunderstorms
Shyam S. Kundu, Abhay Srivastava, Arundhati Kundu, and Shiv Prasad Aggarwal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 813–819, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-813-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-813-2025, 2025
EO aided comprehensive flood management for the Brahmaputra and Barak river basin in NE India
Shiv Prasad Aggarwal, Diganta Barman, Shyam Sundar Kundu, Shanbor Kurbah, and Ranjit Das
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 63–69, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-63-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-63-2025, 2025
Exploring the Potential of EnMAP Hyperspectral Data for Crop Classification: Technique and Performance Evaluation
Jonali Goswami, Ovungrhoni V. Murry, Prasanna Boruah, and Shiv Prasad Aggarwal
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 291–297, https://doi.org/10.5194/isprs-annals-X-G-2025-291-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-291-2025, 2025
Geospatial Technology for Effective Disaster Risk Reduction: Best practices in capacity building
Shiv Prasad Aggarwal, Shyam S. Kundu, and Kamini Kanta Sarma
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-2024, 147–153, https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-147-2024,https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-147-2024, 2024
Disaster Preparedness and capacity building for Resilience in Agriculture
Jonali Goswami, V. Senpakapriya, Chandan Goswami, Kamini Kanta Sarma, and Shiv Prasad Aggarwal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-2024, 17–22, https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-17-2024,https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-17-2024, 2024

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Glacier inventories reveal an acceleration of Heard Island glacier loss over recent decades
Levan G. Tielidze, Andrew N. Mackintosh, and Weilin Yang
The Cryosphere, 19, 2677–2694, https://doi.org/10.5194/tc-19-2677-2025,https://doi.org/10.5194/tc-19-2677-2025, 2025
Short summary
Automated snow cover detection on mountain glaciers using spaceborne imagery and machine learning
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
The Cryosphere, 19, 1675–1693, https://doi.org/10.5194/tc-19-1675-2025,https://doi.org/10.5194/tc-19-1675-2025, 2025
Short summary
Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025,https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Recent observations and glacier modeling point towards near-complete glacier loss in western Austria (Ötztal and Stubai mountain range) if 1.5 °C is not met
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025,https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
The glaciers of the Dolomites: the last 40 years of melting
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
The Cryosphere, 19, 1335–1352, https://doi.org/10.5194/tc-19-1335-2025,https://doi.org/10.5194/tc-19-1335-2025, 2025
Short summary

Cited articles

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T.: Permutation importance: a corrected feature importance measure, Bioinformatics, 26, 1340–1347, https://doi.org/10.1093/bioinformatics/btq134, 2010. a, b
Anilkumar, R., Bharti, R., and Chutia, D.: Point Mass Balance Regression using Deep Neural Networks: A Transfer Learning Approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5317, https://doi.org/10.5194/egusphere-egu22-5317, 2022. a
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 1579–1594, https://doi.org/10.5194/tc-12-1579-2018, 2018. a
Bash, E. A., Moorman, B. J., and Gunther, A.: Detecting Short-Term Surface Melt on an Arctic Glacier Using UAV Surveys, Remote Sensing, 10, 1547, https://doi.org/10.3390/rs10101547, 2018. a
Bolibar, J., Rabatel, A., Gouttevin, I., Galiez, C., Condom, T., and Sauquet, E.: Deep learning applied to glacier evolution modelling, The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, 2020. a, b, c, d
Download
Short summary
Our analysis demonstrates the capability of machine learning models in estimating glacier mass balance in terms of performance metrics and dataset availability. Feature importance analysis suggests that ablation features are significant. This is in agreement with the predominantly negative mass balance observations. We show that ensemble tree models typically depict the best performance. However, neural network models are preferable for biased inputs and kernel-based models for smaller datasets.
Share