Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2811-2023
https://doi.org/10.5194/tc-17-2811-2023
Research article
 | 
13 Jul 2023
Research article |  | 13 Jul 2023

Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques

Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal

Related authors

Geospatial Technology for Effective Disaster Risk Reduction: Best practices in capacity building
Shiv Prasad Aggarwal, Shyam S. Kundu, and Kamini Kanta Sarma
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-2024, 147–153, https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-147-2024,https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-147-2024, 2024
Disaster Preparedness and capacity building for Resilience in Agriculture
Jonali Goswami, V. Senpakapriya, Chandan Goswami, Kamini Kanta Sarma, and Shiv Prasad Aggarwal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-2024, 17–22, https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-17-2024,https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-17-2024, 2024
Towards maximizing geospatial data usage in north eastern India using open-source scalable user-centric applications
Puyam S. Singh, Dibyajyoti Chutia, Nilay Nishant, Avinash Chouhan, Victor Saikhom, Shiv Prasad Aggarwal, and Rahul Kumar
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-2024, 117–121, https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-117-2024,https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-117-2024, 2024
Investigation of thunderstorm characteristics with severe lightning events over NE region of India
Shyam S. Kundu, Abhishek Chhari, Abhay Srivastava, Aniket Chakravorty, Rekha B. Gogoi, and S. P. Aggarwal
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-2024, 95–101, https://doi.org/10.5194/isprs-annals-X-5-2024-95-2024,https://doi.org/10.5194/isprs-annals-X-5-2024-95-2024, 2024
Evaluation of Indian Lightning Location Network (ILLN) and characterization of cloud-to-ground lightning over Lucknow and Shillong using an ordinary camera
Abhay Srivastava, Sunil Dnyandeo Pawar, Shyam Sundar Kundu, Venkatachalam Gopalkrishnan, Manoj Domkawale, Manoj Kumar, and Shiv Prasad Aggarwal
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-2024, 189–196, https://doi.org/10.5194/isprs-annals-X-5-2024-189-2024,https://doi.org/10.5194/isprs-annals-X-5-2024-189-2024, 2024

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Unprecedented 21st century glacier loss on Mt. Hood, Oregon, USA
Nicolas Bakken-French, Stephen J. Boyer, B. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
The Cryosphere, 18, 4517–4530, https://doi.org/10.5194/tc-18-4517-2024,https://doi.org/10.5194/tc-18-4517-2024, 2024
Short summary
Distributed surface mass balance of an avalanche-fed glacier
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733,https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024,https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024,https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023,https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary

Cited articles

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T.: Permutation importance: a corrected feature importance measure, Bioinformatics, 26, 1340–1347, https://doi.org/10.1093/bioinformatics/btq134, 2010. a, b
Anilkumar, R., Bharti, R., and Chutia, D.: Point Mass Balance Regression using Deep Neural Networks: A Transfer Learning Approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5317, https://doi.org/10.5194/egusphere-egu22-5317, 2022. a
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 1579–1594, https://doi.org/10.5194/tc-12-1579-2018, 2018. a
Bash, E. A., Moorman, B. J., and Gunther, A.: Detecting Short-Term Surface Melt on an Arctic Glacier Using UAV Surveys, Remote Sensing, 10, 1547, https://doi.org/10.3390/rs10101547, 2018. a
Bolibar, J., Rabatel, A., Gouttevin, I., Galiez, C., Condom, T., and Sauquet, E.: Deep learning applied to glacier evolution modelling, The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, 2020. a, b, c, d
Download
Short summary
Our analysis demonstrates the capability of machine learning models in estimating glacier mass balance in terms of performance metrics and dataset availability. Feature importance analysis suggests that ablation features are significant. This is in agreement with the predominantly negative mass balance observations. We show that ensemble tree models typically depict the best performance. However, neural network models are preferable for biased inputs and kernel-based models for smaller datasets.