The Cryosphere, 17, 2811-2828, 2023
https://doi.org/10.5194/tc-17-2811-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Cryosphere

Modelling point mass balance for the glaciers of the Central
European Alps using machine learning techniques

Ritu Anilkumar'-2, Rishikesh Bharti’, Dibyajyoti Chutia', and Shiv Prasad Aggarwal'

'North Eastern Space Applications Centre, Department of Space, Umiam, Ri Bhoi, Meghalaya, India
2Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Correspondence: Ritu Anilkumar (ritu.anilkumar@nesac.gov.in)

Received: 11 October 2022 — Discussion started: 10 November 2022
Revised: 8 June 2023 — Accepted: 12 June 2023 — Published: 13 July 2023

Abstract. Glacier mass balance is typically estimated using
a range of in situ measurements, remote sensing measure-
ments, and physical and temperature index modelling tech-
niques. With improved data collection and access to large
datasets, data-driven techniques have recently gained promi-
nence in modelling natural processes. The most common
data-driven techniques used today are linear regression mod-
els and, to some extent, non-linear machine learning mod-
els such as artificial neural networks. However, the entire
host of capabilities of machine learning modelling has not
been applied to glacier mass balance modelling. This study
used monthly meteorological data from ERAS5-Land to drive
four machine learning models: random forest (ensemble tree
type), gradient-boosted regressor (ensemble tree type), sup-
port vector machine (kernel type), and artificial neural net-
works (neural type). We also use ordinary least squares linear
regression as a baseline model against which to compare the
performance of the machine learning models. Further, we as-
sess the requirement of data for each of the models and the re-
quirement for hyperparameter tuning. Finally, the importance
of each meteorological variable in the mass balance estima-
tion for each of the models is estimated using permutation
importance. All machine learning models outperform the lin-
ear regression model. The neural network model depicted a
low bias, suggesting the possibility of enhanced results in
the event of biased input data. However, the ensemble tree-
based models, random forest and gradient-boosted regres-
sor, outperformed all other models in terms of the evaluation
metrics and interpretability of the meteorological variables.
The gradient-boosted regression model depicted the best co-
efficient of determination value of 0.713 and a root mean
squared error of 1.071 m w.e. The feature importance values

associated with all machine learning models suggested a high
importance of meteorological variables associated with abla-
tion. This is in line with predominantly negative mass bal-
ance observations. We conclude that machine learning tech-
niques are promising in estimating glacier mass balance and
can incorporate information from more significant meteoro-
logical variables as opposed to a simplified set of variables
used in temperature index models.

1 Introduction

We can visualize glaciers as interactive climate-response sys-
tems, with their response described by changes in glacial
mass over a given period (e.g. White et al., 1998). Several
studies have reported the impact of climate change on glacier
mass at a global and regional scale (e.g. Le Meur et al.,
2007; Huss et al., 2008), with repercussions including and
not limited to glacial outburst floods and diminishing water
supplies. Thus, understanding the response of glacier mass
balance to climate change is crucial. Glacier mass balance
is most commonly measured via (i) the direct glaciological
method, where point measures of gain or loss of glacial ice
are obtained and extrapolated for the entire glacier (e.g. Kuhn
et al., 1999; Thibert et al., 2008; Pratap et al., 2016); (ii) the
geodetic method, where the change in surface elevation be-
tween two time instances for the same portion of the glacier
is estimated (e.g. Rabatel et al., 2016; Tshering and Fujita,
2016; Trantow and Herzfeld, 2016; Bash et al., 2018; Wu
et al., 2018); and (iii) the indirect remote sensing method,
where measured mass balance is correlated with the equilib-
rium line altitude (ELA) values or accumulation area ratio
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(AAR) values for time series data (e.g. Braithwaite, 1984;
Dobhal et al., 2021). In addition to observational data, simple
temperature-index-based or sophisticated physics-based en-
ergy balance models (e.g. Gabbi et al., 2014) have also been
developed. Energy balance models compute all energy fluxes
at the glacier surface and require measurements of input vari-
ables such as meteorological and other inputs at the glacier
scale (e.g. Gerbaux et al., 2005; Sauter et al., 2020). As these
models are driven by the physical laws governing energy bal-
ance, they provide reliable estimates of glacier mass balance.
However, the substantial requirement for ground data to force
the model, the sizeable number of parameters to calibrate,
and the computational complexity associated with running
the model make it cumbersome to use for large areas. Tem-
perature index models use empirical formulations between
temperature and melt (e.g. Radi¢ and Hock, 2011). The sim-
plicity afforded by these models permits extension to large
scales effectively. However, using only temperature and pre-
cipitation as inputs can lead to oversimplification. Further,
the degree day factors (DDFs) considered in temperature in-
dex models are often invariant. But studies such as Gabbi
et al. (2014), Mattews and Hodgkins (2016), and Ismail et al.
(2023) have observed a decreasing trend in DDF, particularly
at higher elevations. Ismail et al. (2023) also report the sensi-
tivity of the DDF under the influence of the changing climate,
particularly to solar radiation and albedo.

With increasing data points available, a new set of data-
driven techniques has gained prominence in various domains
of Earth sciences. For example, weather prediction (for a
review, see Schultz et al., 2021), climate downscaling (e.g.
Rasp et al., 2018), and hydrology (e.g. Shean et al., 2020)
have used data-driven models, particularly machine learning
(ML) and deep learning (DL) models. Cryospheric studies,
too, have adopted the use of deep learning in several predic-
tion problems (see review in Liu, 2021). Applications of deep
learning in glaciology range from automatic glacier map-
ping (e.g. Lu et al., 2021; Xie et al., 2021) to ice thickness
measurements (e.g. Werder et al., 2020; Jouvet et al., 2021;
Hagq et al., 2021), calving front extraction (e.g. Zhang et al.,
2019; Mohajerani et al., 2021), snow cover mapping (e.g.
Nijhawan et al., 2019; Kan et al., 2018; Guo et al., 2020),
snow depth extraction (e.g. Wang et al., 2020; Zhu et al.,
2021), and sea and river ice delineation (e.g. Chi and Kim,
2017; Liet al., 2017). The use of ML and DL in glacier mass
balance estimation is significantly lower. Initial data-driven
studies used multivariate linear regression to estimate glacier
mass balance from temperature and precipitation (Hoinkes,
1968). Subsequently, several papers have used linear regres-
sion methods for varying inputs such as temperature and
pressure (Lliboutry, 1974), positive degree days, precipita-
tion, temperature, and longwave radiation (Lefauconnier and
Hagen, 1990). Recent studies continue to use linear regres-
sion for modelling glacier mass balance. For example, Man-
ciati et al. (2014) used linear regression to study the effect
of local, regional, and global parameters on glacier mass
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balance; Carturan et al. (2009) used linear regression to in-
corporate the effects of elevation models in the estimation
of summer and winter mass balance measurements. Steiner
et al. (2005) were the first to use neural networks to esti-
mate glacier mass balance. Bolibar et al. (2020) used a least
absolute shrinkage and selection operator (LASSO) regres-
sion, a linear model, and a non-linear neural network model
to simulate glacier mass balance. Steiner et al. (2005), Vin-
cent et al. (2018), and Bolibar et al. (2020, 2022) are some
of the few studies reporting consistently better performance
of non-linear models over linear models. These studies have
largely used neural networks. However, a gamut of ML tech-
niques such as ensemble-based and kernel-based techniques
exist which have largely been under-utilized for the purpose
of modelling glacier mass balance. This limited utilization of
ML models is potentially due to the unavailability of large
ground truth datasets required for training the ML models
and the perceived black-box nature of ML techniques. We
aim to address this by assessing the performance of differ-
ent ML models for varying training dataset sizes. Further,
we aim to shed light on the interpretability of ML models by
using permutation importance to explain the relative impor-
tance of the input meteorological variables. The interpretabil-
ity of machine learning models is largely dependent on the
input variables provided. Existing data-driven models typi-
cally use a subset of topographic and meteorological vari-
ables. For example, Hoinkes (1968) uses temperature, pre-
cipitation, and cyclonic/anti-cyclonic activity; Steiner et al.
(2005) use precipitation and temperature; and Masiokas et al.
(2016) use temperature, precipitation, and streamflow. To the
extent of the authors’ knowledge, no ML-based study has at-
tempted to use a complete set of meteorological variables as-
sociated with the energy balance equation. We expand upon
this and assess the monthly contributions of each of these me-
teorological variables in the estimation of glacier mass bal-
ance.

Through this study, we assess the ability of ML models
to estimate annual point mass balance. We use an example
of each of the following classes of ML models: ensemble
regression tree based, kernel based, neural network based,
and linear models. Under ensemble regression tree based,
we chose one example of boosted and unboosted models.
Specifically, we compare the performance of the random for-
est (RF), gradient-boosted regressor (GBR), support vector
machine (SVM), and artificial neural network (ANN) mod-
els against a linear regression (LR) model. We also assess
the performance for varying dataset sizes, as real-world mea-
surements are limited. Finally, to explain the role of the in-
put features in each of the ML models, we use permuta-
tion importance described further in Altmann et al. (2010).
The input features for the models are the monthly mean of
14 meteorological variables associated with the energy bal-
ance equation. We obtained the meteorological data from the
ERAS-Land reanalysis dataset (Mufioz Sabater, 2019). The
target data used for training the ML models are obtained from
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the Fluctuations of Glaciers database (WGMS, 2021; Zemp
et al., 2021) over the second-order region Alps defined by
the Randolph Glacier Inventory under first-order region 11:
Central Europe (RGI, 2017). Section 2 of the article further
describes each of these datasets. In this section, we also eluci-
date the preprocessing steps associated with an ML approach
and outline the methodology followed. In Sects. 3 and 4, we
compare the performance of each of the models for various
configurations of data availability. We also delve into the in-
terpretability of the models from a feature importance per-
spective. The specific point we investigate as a part of this
study can be summarized as follows:

1. understand the utility of ML models in the estimation of
glacier mass balance using limited real-world datasets

2. identify specific use cases for different classes of ML
models (ensemble tree based, kernel based, neural net-
work based, and linear regression) pertaining to data
availability, evaluation metrics, and explainability

3. investigate the ability of ML models to unravel the un-
derlying physical processes

4. explain the relative importance of meteorological vari-
ables contributing to the mass balance estimation on a
monthly basis over the year.

2 Data and methods
2.1 Machine learning modelling

ML modelling is a data-driven set of modelling techniques.
Here, we used a supervised learning framework for regres-
sion, where inputs are in the form of monthly meteorological
variables, and targets are in the form of point measurements
of glacier mass balance. The actual point mass balance mea-
surements are the target data vital to tuning the model param-
eters. We do this parameter tuning by designing a loss func-
tion defining the variation between the actual mass balance
measurements, i.e. the target data, and the point mass bal-
ance estimates, i.e. the model’s output. We start with random
initialization of model parameters and fine-tune the parame-
ters to minimize the loss function. For each of the ML models
used in the study, we used the mean squared error (MSE) as
the loss function. Further, we obtained the features of impor-
tance by assessing permutation importance. Figure 1 depicts
the complete workflow used for the study. The Supplement
files include runs of such experiments that impact all the ML
models in an equivalent manner.

The RF model is an ensemble-based algorithm where the
base learner used is a decision (regression or classification)
tree (Breiman, 2001). It relies on the principle of bootstrap
aggregating or bagging (proposed by Breiman, 1996) for the
generation of multiple training datasets to be used by each
base learner (Dietterich, 2000). To illustrate this, assume
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Figure 1. Flowchart of the methodology.

there are Nyaa samples in the training dataset D, and a new
dataset D is generated by sampling Ny, samples with repe-
tition. In addition to the generation of bootstrapped datasets,
the decision trees are generated using a random subset of in-
put features at every impure node of the tree instead of a
complete set of features that standard regression trees use.

Like the RF model, the GBR model is an ensemble-based
algorithm where aggregated base learners of decision (clas-
sification or regression) trees provide an estimate. However,
it differs from the RF model because it uses boosting instead
of bagging to construct ensembles. In boosting-based ensem-
bles, base learners are typically weak learners, and the design
of subsequent learners is such that the overall error reduces
(Natekin and Knoll, 2013; Friedman, 2001).

The SVM model is a powerful ML tool that relies on
Cover’s theorem. The theorem suggests that data that might
not be linearly separable in a lower dimensional space can
be linearly separable when transformed into a higher dimen-
sional space. In the context of classification, the SVM model
uses a kernel to transform the data into a higher dimensional
space (Cortes and Vapnik, 1995) where linear separability
is feasible in the form of a hyperplane and decision bound-
aries. For this purpose, we use kernels such as polynomial
kernel and radial basis function kernel (Vapnik, 1999). In the
case of regression, the hyperplane represents the best-fit line.
Thus, unlike empirical risk minimization, where the differ-
ence between the actual and predicted model is optimized,
the SVM model for regression uses structural risk minimiza-
tion by identifying the best-fit line.

McCulloch and Pitts (1943) proposed the NN models as
mathematical representations of biological neuron intercon-
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nections. Hornik (1991) showed that neural networks with as
few as a single hidden layer with a sufficiently large num-
ber of neurons, when used with a non-constant unbounded
activation function, can function as universal function ap-
proximators. Presently, several applications (Seidou et al.,
2006; Moya Quiroga et al., 2013; Haq et al., 2014) using
multiple-layered NN models demonstrate that NNs can in-
fer abstract relationships between features. NN models use
weighted combinations of input features in tandem with non-
linearities provided by activation functions such as sigmoid,
tanh, and rectified linear unit (ReLU), resulting in the model
output. The weights of the NN model are the model parame-
ters obtained by optimization of the loss function.

2.2 Preparation of features and target data

The most crucial component in ML modelling is the avail-
ability of target data to train the model. The target data used
for training should be representative of the entire population.
Hence, we chose the Fluctuations of Glaciers (FoG) database
(WGMS, 2021; Zemp et al., 2021) that contains measured
point mass balance information (46 356 data points) globally.
The study area is the Randolph Glacier Inventory (RGI) ver-
sion 6 (RGI, 2017) second-order region Alps under the first-
order region 11: Central Europe. This consisted of 15727
glacier mass balance point measurements. We performed a
first-level preprocessing where we considered only annual
mass balance measurements (10 102 data points) and mea-
surements from 1950 (9595 data points) onward. We then
performed an outlier removal where we considered only
those points within 2 standard deviations of the median. This
was to avoid the effects of noisy data. We finally used 9166
data points to apply our model.

The second aspect is the input features used by the model
to make predictions. The network of weather stations is
sparse over much of the Alpine terrain; hence, reanalysis
datasets are recommended (Hersbach et al., 2020). We used
the ERA5-Land reanalysis dataset (Mufioz Sabater, 2019).
This dataset was chosen primarily due to its comparatively
high spatial resolution. This is in line with the findings of Lin
et al. (2018) and Chen et al. (2021) that suggest that datasets
with higher spatial resolution effectively represent the oro-
graphic drag and mountain valley circulation, which in turn
results in improved performance for orographically complex
terrain. The choice of variables reflected the contribution of
the same to the energy balance equation that drives mass bal-
ance modelling from a physical standpoint. We considered
the following 14 variables for the modelling: the temperature
at 2 m, snow density, snow temperature, surface net solar ra-
diation, total precipitation, forecast albedo, surface pressure,
surface net solar radiation downwards, snowfall, surface net
thermal radiation, snowmelt, surface sensible heat flux, snow
depth, and surface latent heat flux (for details, see Muiioz
Sabater et al., 2021). We consider these meteorological vari-
ables because of their effect and representation of the accu-
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mulation and ablation process and define the variables ex-
pected to represent accumulation processes as accumulation
variables (e.g. snowfall, forecast albedo) and melt processes
as ablation variables (e.g. temperature, solar radiation). The
monthly mean of each of the accumulation and ablation vari-
ables was considered. Thus, we have 168 total input parame-
ters. For each of these variables, we extracted the data using
the nearest neighbour algorithm, using latitude, longitude,
and year of the glacier mass balance measurement from the
FoG database. Thus, the final dataset has 168 input features
and 9166 data points.

We then normalized the data points using a min—max scal-
ing to ensure the absence of user-conceived bias in the model.
We have split the dataset using a random split, where 70 %
of the total dataset is used for training the model and 30 % is
used for testing the model performance. The training split
is used in a 3-fold cross-validation process for tuning the
hyperparameters, as described further in Sect. 2.3. Finally,
we rescaled the model’s predictions to assess the model met-
rics, such as root mean squared error (RMSE), mean abso-
lute error (MAE), normalized mean squared error (nNRMSE),
and normalized mean absolute error (nMAE) in the measured
point mass balance units.

2.3 Hyperparameter selection and fine-tuning

In typical ML workflows, we split the complete dataset (set
of features and target data) into training, validation, and test-
ing. We fit the model to the data using the training subset,
tune the hyperparameters using the validation subset, and re-
port the independent performance metrics using the testing
subset. In our case, we used a 70 %—30 % split for training
and testing. We have considered a hyperparameter grid with
all combinations of values that each hyperparameter can take
(see Table 1). Rather than using a fixed ratio subset for vali-
dation, as was the case with the testing, we divided the train-
ing data subset into three equal folds. Two folds are randomly
selected as the training set, and the third fold is used for vali-
dation. The validation score is noted, and the process is then
repeated for the other fold combinations. The mean valida-
tion score for each hyperparameter setting obtained from the
grid is used for the selection of the optimal hyperparameters.
We compute the validation score as the negative of the RMSE
after scaling the target data to a range between 0 and 1. Thus,
a more negative validation score results in a more significant
error.

For the RF model, we tuned the number of trees. We main-
tained the maximum depth as indefinite, leading to tree ex-
pansion until all nodes were pure. We considered all features
to obtain the best split, ensuring minimum bias. As compu-
tation for absolute error is slow at each split, we used the
squared error as the splitting criterion. This ensured the min-
imization of the variance after each split. For the GBR model,
we tuned the number of trees, maximum depth of each tree
(which affects the randomness in the choice of features in
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Table 1. Grid of settings used for hyperparameter tuning of each of the models.

Machine learning model Hyperparameter Values
Random forest Number of trees 10, 20, 50, 100
Number of trees 50, 100, 200
Gradient-boosted regressor Subsampling 0.7, 1.0
Maximum depth 3,5,10
Cost 0.1, 1, 10, 20
Support vector machine Kernels Sigmoid, radial basis function, polynomial
Degree (polynomial kernel) 2,3,4,5

Artificial neural network

Number of layers and nodes

1: 10, 50, 100, 200, 300, 400, 500

2: (100, 50), (200, 100), (400, 200), (200, 400)

3: (400, 200, 100), (500, 200, 100), (200, 100, 50), (100,
50, 10)

4: (200, 300, 400, 500), (300, 200, 100, 50), (200, 100,
50, 10)

each tree), and subsampling ratio (for stochastic gradient
boosting). Larger values of maximum depth, such as the in-
determinate depth of the RF model, are not used as GBR
functions with weak learners to increase the randomness. The
SVM model hyperparameter fine-tuning involved kernel se-
lection and a choice of the regularization parameter. Further,
in the case of polynomial kernels, the degree of the poly-
nomial was also tuned. For the NN model, we used a fully
connected feedforward network where the hyperparameters
of the number of layers and number of neurons in a layer
were tuned. The activation function ReLU was used to in-
corporate non-linearity. We used the Adam (Kingma and Ba,
2014) optimizer to minimize the loss function. The training
process was performed for 500 iterations with early stopping
in the event of convergence before completing the iterations.
The NN models for each set of hyperparameters converged
before the completion of the 500 iterations.

2.4 Performance evaluation

The testing dataset evaluation metrics used to assess the mod-
els’ performances are the coefficient of determination (R?)
which represents the percentage deviation between the tar-
get and model predictions, the RMSE which represents the
absolute deviations between the target, and the model pre-
dictions. Lower R? values suggest that the model does not
represent the targets well. Values close to 1 indicate a strong
linear correlation. Lower RMSE values are preferable, as this
quantifies the variance between the targets and predicted val-
ues. Additionally, we report the slope and additive bias using
reduced major axis (RMA) regression. We used RMA regres-
sion slope and bias to ensure symmetry about the y = 1 line.
This is preferable, as there exist uncertainties in both target
data and outputs.

ML models are heavily reliant on the availability of train-
ing data. To understand the effect of data availability on the
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model performance, we perform an experiment on varying
the training sizes. We split the original dataset into subsets
of iteratively increasing sizes. We partition each subset into
training and testing partitions using a 70 : 30 ratio. For each
subset, we trained all the models using the training partition
and computed the evaluation metrics over the testing parti-
tion.

2.5 Feature importance

The feature importance is represented using permutation im-
portance described in Altmann et al. (2010). Here, we dis-
regard individual features from the model at each iteration
and recorded the reduction in evaluation score. This is re-
peated for each input feature. We normalize the obtained per-
mutation importance for each model and express the impor-
tance of each input meteorological variable as a percentage.
A comparative analysis of the obtained feature importance
is performed on percentage importance associated with the
accumulation months (November to March) and the ablation
months (June—September) is summed and graphically repre-
sented for each model in Fig. 6.

3 Results

This section describes the major outcomes of the study cate-
gorized as the role of dataset size for the effective training of
each ML model (see Fig. 2), the performance, and the feature
importance associated with each ML model. Figure 3 repre-
sents the comparative performance of each of the models in
terms of the accuracy metrics RMSE, RZ, slope, and additive
bias. A scatter plot of modelled point mass balance and target
data is represented in Fig. 4. Figure 5a, b, c, and d represent
the hyperparameter tuning associated with the models. The
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feature importance for all input variables summed over the
ablation and accumulation months is represented in Fig. 6.

3.1 Role of training dataset size

The number of samples required for training the ML mod-
els depends upon the complexity of the model. Thus, each
of the models used in this study is variably sensible to the
number of training samples. We use the evaluation metrics of
RMSE and the correlation coefficient to assess the require-
ment of training samples for each of the models. Figure 2
depicts the training and testing metrics varying with the size
of the training dataset. The training metrics do not show sig-
nificant change after 20 %—30 % of the training dataset size
for the LR, RF, GBR, and SVM models and after 40 % for
the NN model. This illustrates the larger number of trainable
parameters, resulting in the requirement of larger datasets
for artificial neural networks for training. The testing per-
formance of each of the models does not show significant
change for training dataset sizes larger than 50 %. We ob-
serve that, while a downward trend is evident with the addi-
tion of new data, the rate of improvement is slower.

It is interesting to note that RF, GBR, and LR models
see an increase in training MAE as opposed to a consistent
decrease in testing MAE with increasing training samples.
This depicts the tendency of these models to overfit the train-
ing samples in the case of smaller datasets. This is evident
when observing the order of variation in the training and
testing evaluation metric for smaller datasets; e.g. GBR de-
picts a training MAE of 357 mmw.e. and a testing MAE of
1183 mm w.e. at 10 % training dataset size and training MAE
of 659 mm w.e. and a testing MAE of 774 mm w.e. at 100 %
training dataset size. Thus, care must be taken when using
RF and GBR for smaller datasets, as they are susceptible to
overfitting. The performance of the LR model deteriorates
for training, and testing performance is also poor. This is not
due to overfitting but due to the inability of the model to ex-
plain the complex relationship between the inputs and the tar-
get. NN requires larger datasets for the training of the model.
Figure 2b depicts the superior performance of RF, GBR, and
SVM in the event of limited dataset availability. However, we
have seen that RF and GBR show a marked increase in train-
ing MAE with increasing training samples, which suggests
overfitting to limited datasets. Thus, SVM is more robust to
smaller datasets.

3.2 Performance of RF modelling

The best-performing RF model resulted in a testing RMSE
value of 1083 mmw.e. and an R? value of 0.71. The test-
ing MAE value is 782 mm w.e., and the testing nRMSE and
nMAE values are 0.55 and 0.40 respectively. The training
RMSE value is 934 mmw.e., MAE value is 672mmw.e.,
nRMSE is 0.48, nMAE is 0.34, and R? value is 0.80. We
observe that hyperparameter tuning is not important, and no
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major variations were observed upon changing the number of
estimators. The slope of RF was closest to 1, with a value of
0.752 for the training samples and 0.744 for the testing sam-
ples. Both the training and testing additive bias were neg-
ative, suggesting the model underestimated the point mass
balance (Fig. 3).

Feature importance analysis using permutation importance
considering the 17 (10 % of all features) most essential fea-
tures indicates that the RF model is highly influenced by
downward solar radiation in January; net solar radiation in
July; downward thermal radiation in June; temperature at 2 m
in June; forecast albedo in February and December; snow
depth in January and July; snow density and snowmelt in
July; sensible heat flux in December, January, March, and
May; latent heat flux in August; and surface pressure in
June and July. Permutation importance for the RF model
summed over the accumulation months had the highest im-
portance scores for sensible heat flux followed by downward
solar radiation and forecast albedo. Each of these variables
depict a summed percentage importance between 6 %—9 %.
Snow depth and pressure are also important, with a summed
percentage importance between 3 %—6 %. For the ablation
months, only pressure is observed to have a summed percent-
age importance greater than 6 %. Sensible heat flux, net solar
radiation, latent heat flux, snow depth, forecast albedo, snow
density, and temperature at 2 m display a summed percentage
importance between 3 %—6 %.

3.3 Performance of GBR modelling

Tuning the maximum depth permitted for each weak learner
tree was important in estimating the best model, and vary-
ing the number of weak learner trees during hyperparameter
tuning improved performance in the case of smaller depths
of the weak learners. Deeper tree structures did not signif-
icantly change the model’s performance upon changing the
number of trees. Stochastic gradient boosting (subsampling
at 0.7) resulted in reduced performance. The hyperparame-
ter combination of the best-performing GBR model is 100
trees with a maximum depth of five nodes (Fig. 5a). The best-
performing GBR model resulted in a testing RMSE value of
1071 mmw.e. and an R? value of 0.71. The testing MAE
value is 774 mmw.e., and the testing nRMSE and nMAE
are 0.55 and 0.39 respectively. The training RMSE value is
759 mm w.e., MAE value is 659 mm w.e., nRMSE is 0.39,
nMAE is 0.34, and R? value is 0.80.

The most important meteorological inputs for the GBR
model are snowfall in July; downward solar radiation in Jan-
vary and December; forecast albedo in December, January,
February, March, and May; sensible heat flux in January,
March, May, November, and December; temperature at 2 m
in June and August; snow depth in June; and surface pres-
sure in August. Note the marked importance associated with
ablation meteorological variables and the months associated
with ablation. Permutation importance expressed as a per-
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Histogram of the dataset of point glacier mass balance
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Figure 2. (a) Histogram depicting the distribution of the glacier mass balance measurements used for the study. (b) Box and whisker plot
depicting the training and testing MAE (in mm w.e.) and r values for varying the size of the training dataset for each of the models. The box
represents the quartiles 1 to 3, and the whiskers represent the rest of the distribution ignoring outliers. (¢) Modelwise training mean absolute
error (in mm w.e.) for varying the size of the training dataset size. (d) Modelwise testing mean absolute error (in mm w.e.) for varying the
size of the training dataset size. Note, the training dataset size is expressed as a percentage of the largest size of the training dataset, i.e. 6416

data points.

centage and summed over the accumulation months depicts
the most importance to forecast albedo, followed by sensible
heat flux, with both variables depicting a summed percent-
age importance greater than 10 %. Among other meteorolog-
ical variables, downward solar radiation, net solar radiation,
and snow depth in the accumulation months are also impor-
tant. The ablation months depict higher summed importance
values, with forecast albedo in these months prominent. Sen-
sible heat flux, latent heat flux, surface pressure, snowfall,
snow depth, and temperature at 2m above the surface are
also important.

3.4 Performance of SVM modelling
The SVM model depicted large fluctuations in the valida-

tion score with changes in the hyperparameters. This is rep-
resented in Fig. 5b. We considered the hyperparameters of
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the kernel, degree (for polynomial kernel), and regulariza-
tion (penalty) factor. The sigmoid kernel resulted in evalua-
tion metrics markedly poorer than the radial basis function
(RBF) kernel and polynomial kernels. The sigmoid kernel
was excluded from the graphical representation of the valida-
tion score to emphasize the variations observed in the other
kernels. The polynomial kernel at larger degrees consistently
performed better than the RBF kernel in the case of regu-
larization tuning lower than 1. For larger regularization pa-
rameters, the RBF kernels demonstrated better performance.
The best-performing model in this study is the RBF kernel
(penalty factor: 10.0). Figure 5b depicts the results of hy-
perparameter tuning for the SVM kernel. The testing RMSE
values for the model are 1085 mm w.e., and the R? value is
0.70. The testing MAE value is 836 mm w.e., and the testing
nRMSE and nMAE are 0.56 and 0.43 respectively. The train-
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Figure 3. Training and testing performance of each of the models: random forest (RF), gradient-boosted regression (GBR), support vector
machine (SVM), artificial neural network (ANN), and linear regression (LR) depicted using the performance metrics (a) root mean squared

error, (b) coefficient of determination, (c) slope, and (d) additive bias.

ing RMSE value is 727 mm w.e., MAE value is 727 mm w.e.,
nRMSE is 0.37, nMAE is 0.37, and R? value is 0.76.

The permutation importance associated with the sensible
heat flux in March is most important, as is the sensible heat
flux associated with April, May, June, and December. Latent
heat flux in August and October is important. Snowfall in Oc-
tober and snow density for the months of November, Decem-
ber, and January are important. The temperature at 2 m above
the surface in June and July; downward solar radiation in De-
cember; and forecast albedo in August, October, and Decem-
ber are important. Summing the percentage importance over
the accumulation and ablation months, we observe that sen-
sible heat flux in the accumulation months is most impor-
tant, followed by snow density and downward solar radia-
tion. These three variables depict a summed percentage im-
portance of more than 6 %. The temperature at 2ma.g.l. and

The Cryosphere, 17, 2811-2828, 2023

forecast albedo depict an importance between 3 %—6 % for
the accumulation months. For the ablation months, sensible
heat flux continues to depict a summed percentage impor-
tance of more than 6 %. Latent heat flux, snow density, fore-
cast albedo, and temperature at 2m above the surface also
depict a summed percentage importance between 3 %—6 %.

3.5 Performance of NN modelling

The NN model performance is highly susceptible to hyper-
parameter selection. We varied the number of hidden layers
in the network and the number of neurons in each hidden
layer. Figure 5c and d depict the variation in performance of
the model for each of these cases. On the left is the varia-
tion in the number of neurons for a single hidden layer. A
larger number of hidden neurons permits more combinations
of the inputs that can affect the targets. The improved perfor-
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Scatter plot of Modelled and Target Point Mass Balance
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Figure 4. Testing scatter plot depicting the performance for each of the models: random forest (RF), gradient-boosted regression (GBR),
support vector machine (SVM), artificial neural network (ANN), and linear regression (LR).

mance with the increasing size of neurons illustrates the role
of the complexity of the model in estimating mass balance.
Increasing the number of layers also affects the performance
of the NN model, with the best performance obtained using
two hidden layers. This further emphasizes the importance of
incorporating non-linear elements in estimating point mass
balance. A larger number of hidden layers did not signifi-
cantly improve performance, as the larger number of param-
eters demanded a larger training dataset to avoid overfitting
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and to complete the training. The testing RMSE values for
the best-performing model are 1096 mm w.e. and R? value is
0.70. The testing MAE value is 836 mm w.e., and the testing
nRMSE and nMAE are 0.56 and 0.43 respectively. The train-
ing RMSE value is 773 mm w.e., MAE value is 773 mm w.e.,
nRMSE is 0.39, nMAE is 0.39, and R? value is 0.76.

The most important meteorological variables in terms of
the percentage permutation importance for the NN model
are the sensible heat flux for March, April, and May; latent

The Cryosphere, 17, 2811-2828, 2023



2820

Hyperparameter tuning for GBR model

—-0.140

|
e
-
'S
8]

|
e
-
>
IS

—-0.146

-0.148
Depth: 3 Subsample: 0.7
Depth: 3 Subsample: 1
Depth: 5 Subsample: 0.7
Depth: 5 Subsample: 1
Depth: 10 Subsample: 0.7
Depth: 10 Subsample: 1

Validation Score : Negative Scaled RMSE

FEiL g

-0.152

60 80 100 120 140 160 180 200

Number of Trees

(a)

R. Anilkumar et al.: Estimating mass balance using machine learning

Hyperparameter tuning for SVM model

-0.142

!
o
-
IS
IS

|
o
o
IS
>

o
o
=
%o

|
e
o
=
o

-0.152

-0.154

Validation Score : Negative Scaled RMSE

—— Penalty: 0.1

—e— Penalty: 1
Penalty: 10

—4— Penalty: 20

-0.156

Poly Deg 2 Poly Deg 3 Poly Deg 4

Kernels

Poly Deg 5 RBF

Hyperparameter Tuning for Artificial Neural Network

—-0.140

-0.145

-0.150

-0.155

Validation Score : Negative Scaled RMSE

-0.160

0 100 200 300 400
Number of n(eu)rons (single hidden layer)
C

/\’//—

—— Mean test score
Minimum to Maximum scores

500 1 2 3 4

Number of hidden layers

(d)

Figure 5. Hyperparameter tuning for the (a) GBR model varying the number of trees, maximum depth of each tree, and subsampling fraction;
(b) SVM model varying the penalty parameter and kernel as well as degree in the case of the polynomial kernel; (¢) NN model varying the
number of neurons in a single hidden layer; and (d) NN model varying the number of hidden layers. The validation score used is the negative
scaled RMSE, which is the negative of the normalized RMSE values that can easily be used to rank the hyperparameter settings.

heat flux in July; surface pressure in February; net solar ra-
diation in May and September; downward solar radiation in
December; and forecast albedo in July. The snow density in
December and the snow depth in January, February, April,
July, September, October, and December are important. We
see that snow depth across the year dominates the impor-
tant meteorological inputs for this model. Upon summing
the percentage importance for the accumulation and ablation
months, we observe that snow depth is the most important
for both accumulation and ablation months. Snow density,

The Cryosphere, 17, 2811-2828, 2023

pressure, sensible heat flux, and downward solar radiation are
also important in the accumulation months, with a summed
percentage importance value between 3 %—6 %. For the abla-
tion months, net solar radiation is also important. Snow den-
sity, forecast albedo, latent heat flux, and sensible heat flux
are also important, with summed percentage importance val-
ues between 3 %—6 %.
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Figure 6. Percentage importance of all features summed over the accumulation and ablation season for the models: random forest (RF),
gradient-boosted regression (GBR), support vector machine (SVM), artificial neural network (ANN), and linear regression (LR).

3.6 Performance of LR modelling

The testing RMSE values for the LR model are 1248 mm w.e.
and R? value is 0.58, and the training RMSE values are
1197 mmw.e. and R? value is 0.61 (Fig. 3). The testing
MAE value is 941 mmw.e., and the nRMSE and nMAE
are 0.64 and 0.48 respectively. The training MAE value is
935 mm w.e., nRMSE is 0.61, and nMAE is 0.48.

Snow depth over most of the year is the most important
feature for the model, with surface pressure also playing an
important role. Other features do not depict as high an im-
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portance value. However, relative importance varies across
the months.

4 Discussion

4.1 Comparison of model performance and associated
errors

The performance of each of the models was evaluated using

an independent test dataset. The GBR model resulted in the
best testing performance MAE, RMSE, and R? values, out-
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performing the RF model and SVM and NN models. Neu-
ral networks resulted in better bias performance. RF, GBR,
SVM, and NN significantly improve upon the LR model’s
metrics. The ability of all non-linear models to outperform
the linear model is further depicted in each model’s scatter
plot (Fig. 4). This is in agreement with similar studies in
other domains, such as King et al. (2020), who showed that
tree-based models such as RF were preferable to LR models
for the bias correction of snow water equivalent, and Rasouli
et al. (2012), who depicted the efficacy of non-linear models
in estimation of streamflow when compared to linear models.

The performance of all models is affected by the uncer-
tainties associated with the input features and targets. Inher-
ent errors exist in point mass balance estimates, as hetero-
geneity is not captured sufficiently by the available measure-
ments (Zemp et al., 2013; Van Tricht et al., 2021). Of the 727
locations with uncertainty estimation performed, we note a
mean uncertainty of 62 mm w.e., which can adversely impact
performance evaluation. The uncertainty estimates for the re-
maining point locations are unknown; hence, their impact is
not constrained. In this study, we did not consider the effect
of topography and debris cover for the models. This can lead
to inflated RMSE values.

Further, the use of input meteorological reanalysis data
can result in bias, especially in locations without sufficient
ground stations (Zandler et al., 2019; Guidicelli et al., 2023).
Specifically for the use of ERAS5-Land data in complex ter-
rain, Wu et al. (2023) report that while ERA5-Land repre-
sents the intra-annual variations in precipitation character-
istics, there is a positive bias in the precipitation variables.
Similarly, in the case of temperature, Zhao and He (2022)
show through correlation and RMSE analysis that while the
ERAS5-Land dataset captures the temperature trends effec-
tively, the magnitude of the values is not well represented.
Thus, we suggest using a bias correction step such as that
proposed by Cucchi et al. (2020) in the case of RF, GBR,
and SVM models. Moreover, the reanalysis data do not fully
reflect point scale data, as they have a coarse resolution. Lin
et al. (2018) depict the impact of resolution in simulating
drivers of local weather in complex terrain and show that
coarser resolutions do not account for orographic drag. Ap-
proaches such as using a scaling factor or lapse rates have
been attempted in studies (e.g. Radi¢ et al., 2014; Maussion
et al., 2019). However, these studies largely utilize precipita-
tion and temperature as inputs, the scaling of which with ele-
vation is fairly straightforward. Choosing appropriate scaling
factors for other meteorological variables that drive glacier
mass balance (e.g. sensible and latent heat fluxes, albedo) is
not intuitive. We note that the effects of the larger scale of the
input variable will persist in the model. However, these ef-
fects will be consistent across all the models. Thus, the effect
of the input variable scale is represented by the uncertainty
of all models, and a relative analysis of the performance of
models will remain well founded.
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4.2 Role of training dataset availability

The testing performance improves by increasing the num-
ber of training samples. We observe that for a larger number
of data points, marginal improvement is observed upon in-
creasing the number of samples further. The reduction in the
rate of improvement for all models suggests that all models
have been successfully trained. However, the marginal im-
provements observed suggest that a potential improvement
in model performance is possible when including more data
samples. The RF and GBR models overfit the training sam-
ples in the case of smaller datasets. The NN model training
and testing metrics depict improved performance with train-
ing size. The NN model had the most trainable parameters
and hence is the most data intensive. A larger number of
training samples is essential for models with a larger number
of trainable parameters. The training performance of the LR
model deteriorates with increasing training samples. While
the graph (LR model of Fig. 2) appears similar to the RF
and GBR training graphs, the relatively close training and
testing metric values suggest that overfitting is not the likely
cause. Rather, it suggests that the model cannot explain the
non-linear relationship between the inputs and the target.

Further, Fig. 2 represents each model’s variation in train-
ing and testing evaluation metrics. Each model was trained
and tested over each dataset size. For each model, the box
plots are generated by utilizing the outcome of the models
developed using varying training dataset sizes. The training
performance, as expected, is better than the testing perfor-
mance, as the model parameters are tuned to fit this dataset.
The range of values is more extensive for the testing errors as
a result of overfitting in the case of smaller datasets. In such
cases, the use of the SVM model yields better results.

4.3 Unravelling the physics using
machine-learning-derived feature importance

Assuming a winter accumulation-type glacier, we expect the
months of November to March to be dominated by accumula-
tion processes and June to September to be dominated by ab-
lation processes. Analysis of the permutation importance (by
percentage) of the features of each model was studied month-
wise based on a physical understanding of which season-
specific features will be most important. Figure 6 represents
the summed feature importance for each input variable in
the accumulation and ablation months. We sum the percent-
age importance rather than the feature importance values to
permit comparison between models. We expect temperature
(2 m) for ablation seasons to be significant compared to tem-
peratures in the accumulation season. This is not well re-
flected when using the LR model. While all the ML models
show the reduced importance of temperature in the accumu-
lation months, it is most pronounced in the case of the RF
and GBR models. A similar trend is expected for the down-
ward thermal radiation and snowmelt. Here too the LR model
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does not reflect the expected outcome. All ML models depict
reduced importance in the accumulation months, with a pro-
nounced reduction observed in the RF and GBR models. In
the case of snowmelt, all ML models and the LR model fol-
low the expected response. Snow depth throughout the year
is important when considering snow density. We expect the
depth in the ablation months to be important. All models por-
tray this except the SVM model. We observe that the LR
model relies heavily on snow depth to estimate the mass bal-
ance. The SVM model reports the exaggerated importance
of snow density in the accumulation months. While we ex-
pect more importance regarding precipitation terms such as
total precipitation and snowfall in the accumulation months,
we do not observe this for any model. The LR model did
show a weak reduction in the importance of total precipi-
tation and snowfall. However, the ML models showed only
a weak reduction or a weak increase in importance. This is
possibly a result of the scale of the meteorological variables
used not sufficiently representing the influence of orographic
water vapour transport that results in precipitation (Lin et al.,
2018; Chen et al., 2021).

Net solar radiation and albedo are important ablation com-
ponents. Albedo over snow-covered regions is higher than
that of exposed ice or firn. At higher elevations and in sum-
mer months, we expect lower albedo values. Thus, variations
in albedo are significant. In the case of ERAS5-Land, the fore-
cast albedo variable represents both the direct and diffuse ra-
diation incident on the surface, with values dependent on the
land cover type. It is calculated using a weight applied to the
albedo in the UV-visible and infrared spectral regions. The
albedo of snow and ice land covers differs in the UV-visible
and infrared spectral regions. This makes forecast albedo
more important than broadband albedo, which depends only
on the surface net solar radiation and the surface solar radi-
ation downwards. The expected importance of the albedo is
observed in the RF, GBR, NN, and SVM model. LR mod-
els, in contrast, depict very low importance of albedo for the
accumulation months. Thus, we see that the ML models rep-
resent the importance of the ablation features well. This is
in agreement with the predominantly negative mass balance
observed in in situ measurements.

We can observe that the importance associated with the
meteorological variables is not dominated solely by total pre-
cipitation and temperature, as with temperature index mod-
els. Thus, ML modelling can represent the contributions of
a complete set of variables with lesser complexity and ease
of use than physical models. This also emphasizes the re-
quirement for ML models to use all meteorological variables
of interest, as opposed to a subset of them. This is the case
with studies such as Bolibar et al. (2020). Further, our results
agree with the studies conducted by Steiner et al. (2005) and
Bolibar et al. (2022) in that artificial neural networks capture
the complexity of the mass balance estimation using non-
linear relationships between inputs. However, we propose
that other ML models, notably ensemble tree-based meth-
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ods, can be used as an equivalent to improved estimates in
the case of fewer real-world data samples for training. This
has also been observed in other studies (e.g. Bair et al., 2018)
For this case, feature importance derived using permutation
importance for the ensemble-based models, RF and GBR,
represented the expected role of meteorological variables in
determining feature importance. The evaluation metrics also
emphasize the performance of these models.

4.4 Relevance to future studies

With the emergence of artificial intelligence techniques, a
number of studies have employed deep learning algorithms
for numerous applications. A majority of these studies use
neural networks to incorporate non-linearity in the mod-
elling of various Earth observation applications. However,
a host of ML techniques exist which remain under-utilized.
This is being studied in the ML, community (e.g. Fernandez-
Delgado et al., 2014, studied 179 classification models), and
it has been observed that for tabular datasets, tree-based mod-
els remain state of the art (Shwartz-Ziv and Armon, 2021;
Grinsztajn et al., 2022) for both classification and regression
problems for medium-sized datasets (training samples under
10000). Our study also depicts the improved performance
of GBR models, which aligns with these recent findings.
While it largely follows the assumptions made by Grinsztajn
et al. (2022), we demonstrate the case of regression with het-
erogeneous and interdependent input features, and a voided
assumption of the identical and independent distribution of
samples also depict a better performance by ensemble tree-
based models. With glacier mass balance datasets being typ-
ically medium-sized datasets with correlated input features,
we recommend that studies aiming to use ML for modelling
the Earth system consider the ensemble-based techniques.
Many ensemble-based techniques exist, including bagging as
used by RF and boosting as used by AdaBoost and GBR. Fur-
ther, studies that combine ensemble trees models with deep
learning are also being used effectively (e.g. Shwartz-Ziv and
Armon, 2021, used XGBoost in tandem with an ensemble
of deep models). Bolibar et al. (2020) utilize a leave-one-
year-out and leave-one-glacier-out mode of testing the per-
formance of the model. This is in line with Roberts et al.
(2017), who suggest that spatially and temporally structured
datasets would benefit from a manually designed blocking
strategy. As the testing and validation splits will result in sim-
ilar effects in all the models, performing the grouped splitting
does not provide immense value to this study. However, for
cases where a single model is to be used to estimate glacier
mass balance, the leave-one-glacier-out and leave-one-year-
out techniques are useful.

An aspect not considered in this study is a transfer learn-
ing approach to the ML modelling, where glacier mass bal-
ance datasets from other locations can be used to pre-train
the neural network and generate an initialization of weights
to be tuned by the dataset of the region of interest (see
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Anilkumar et al., 2022). In line with utilizing datasets from
other locations, another aspect to consider with glacier mass
balance datasets is the generalizability of the models. Un-
derstanding which machine learning model can be used for
local, regional, and global analysis is important and will be a
useful study to take up. Feature importance associated with
the local, regional, and global analysis will also provide new
insights into the changes in the glacier mass balance at these
scales. An important factor to note is that through this study,
we have considered annual mass balance measurements as
opposed to seasonal measurements due to the paucity of suf-
ficient datasets to train a multi-parameter machine learning
model fully. The role of ablation and accumulation variables
will be better represented in the case of seasonal measure-
ments and is an avenue to explore through future studies.

5 Conclusions

In this study, we constructed four ML models to estimate
point glacier mass balance for the RGI first-order region 11:
Central Europe. We used the ERAS5-Land reanalysis meteo-
rological data to train the models against point measurements
of glacier mass balance obtained from the FoG database.
In addition to the NN model, which is being increasingly
utilized for glacier mass balance estimation, we used other
classes of ML models, such as ensemble tree-based models,
RF and GBR, and the kernel-based model, SVM. We com-
pared these ML models with an LR model commonly used
for mass balance modelling. Care must be taken to tune the
hyperparameters for the GBR, NN, and SVM models. We ob-
serve that for these models, hyperparameter tuning was ben-
eficial for improving the estimates of glacier mass balance.
For smaller datasets, ensemble models such as RF and GBR
depict overfitting. The NN model requires more data sam-
ples for effective training. The SVM model can effectively be
used in the case of a smaller number of data samples, which
is characteristic of real-world datasets. The LR model is con-
sistently unable to capture the complexity of the data and
underperforms. For larger datasets, ensemble models such
as RF and GBR perform slightly better in terms of R? and
RMSE. However, NN models depict the least bias. The mete-
orological variables obtained from reanalysis datasets are as-
sociated with high bias. Using NN and LR models permits us
to use them directly. For other models, bias correction should
be incorporated in the preprocessing. Representation of real-
world features is also performed more effectively by RF and
GBR models. These models indicate the importance of ab-
lation features dominating the mass balance estimates. This
is expected, as the mass balance measurements are primarily
negative. Further, feature importance suggests that features
such as forecast albedo, sensible heat flux, latent heat flux,
and net solar radiation also play a pivotal role in estimating
point mass balance. Thus, inclusion of these additional vari-
ables might be of importance for future studies.
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