Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2585-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2585-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations
Cyrille Mosbeux
CORRESPONDING AUTHOR
Institute of Geophysics and Planetary Physics, Scripps Institution
of Oceanography, UC San Diego, La Jolla, CA, USA
IGE, Univ. Grenoble Alpes/CNRS, Grenoble, France
Laurie Padman
Earth and Space Research, Corvallis, OR, USA
Emilie Klein
Laboratoire de Géologie – CNRS UMR 8538, École normale supérieure
– PSL University, Paris, France
Peter D. Bromirski
Institute of Geophysics and Planetary Physics, Scripps Institution
of Oceanography, UC San Diego, La Jolla, CA, USA
Helen A. Fricker
Institute of Geophysics and Planetary Physics, Scripps Institution
of Oceanography, UC San Diego, La Jolla, CA, USA
Related authors
Cyrille Mosbeux, Peter Råback, Adrien Gilbert, Julien Brondex, Fabien Gillet-Chaulet, Nicolas C. Jourdain, Mondher Chekki, Olivier Gagliardini, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-3039, https://doi.org/10.5194/egusphere-2025-3039, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Transport processes like rocks carried by ice flow and damage evolution – a proxy for crevasses – are key in ice sheet modeling and should occur without diffusion. Yet, standard numerical methods often blur these features. We explore a particle-based Semi-Lagrangian approach, comparing it to a Discontinuous Galerkin method, and show it can accurately simulate such transport when run at high enough resolution.
Cyrille Mosbeux, Peter Råback, Adrien Gilbert, Julien Brondex, Fabien Gillet-Chaulet, Nicolas C. Jourdain, Mondher Chekki, Olivier Gagliardini, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-3039, https://doi.org/10.5194/egusphere-2025-3039, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Transport processes like rocks carried by ice flow and damage evolution – a proxy for crevasses – are key in ice sheet modeling and should occur without diffusion. Yet, standard numerical methods often blur these features. We explore a particle-based Semi-Lagrangian approach, comparing it to a Discontinuous Galerkin method, and show it can accurately simulate such transport when run at high enough resolution.
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024, https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Short summary
We develop a method for ice-sheet-scale retrieval of supraglacial meltwater depths using ICESat-2 photon data. We report results for two drainage basins in Greenland and Antarctica during two contrasting melt seasons, where our method reveals a total of 1249 lake segments up to 25 m deep. The large volume and wide variety of accurate depth data that our method provides enable the development of data-driven models of meltwater volumes in satellite imagery.
Indrani Das, Jowan Barnes, James Smith, Renata Constantino, Sidney Hemming, and Laurie Padman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1564, https://doi.org/10.5194/egusphere-2024-1564, 2024
Short summary
Short summary
George VI Ice Shelf (GVIIS) on the Antarctic Peninsula is currently thinning and the glaciers feeding it are accelerating. Geologic evidence indicates that GVIIS had disintegrated several thousand years ago due to ocean and atmosphere warming. Here, we use remote sensing and numerical modeling to show that strain thinning reduces buttressing of grounded ice, creating a positive feedback of accelerated ice inflow to the southern GVIIS, likely making it more vulnerable than the northern sector.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere, 17, 4079–4101, https://doi.org/10.5194/tc-17-4079-2023, https://doi.org/10.5194/tc-17-4079-2023, 2023
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Qiang Sun, Christopher M. Little, Alice M. Barthel, and Laurie Padman
Ocean Sci., 17, 131–145, https://doi.org/10.5194/os-17-131-2021, https://doi.org/10.5194/os-17-131-2021, 2021
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020.
Allison, I., Bindoff, N. L., Bindschadler, R. A., Cox, P. M., de Noblet, N., England,
M. H., Francis, J. E., Gruber, N., Haywood, A. M., Karoly, D. J., Kaser, G., Le Quere,
C., Lenton, T. M., Mann, M. E., McNeil, B. I., Pitman, A. J., Rahmstorf, S., Rignot,
E., Schellnhuber, H. J., Schneider, S. H., Sherwood, S. C., Somerville, R. C. J.,
Steffen, K., Steig, E. J., Visbeck, M., and Weaver, A. J.: The Copenhagen Diagnosis:
Updating the World on the Latest Climate Science, Elsevier, Oxford, UK, 2011.
Armitage, T. W. K., Kwok, R., Thompson, A. F., and Cunningham, G.: Dynamic
Topography and Sea Level Anomalies of the Southern Ocean: Variability and
Teleconnections, J. Geophys. Res.-Oceans, 123, 613–630,
https://doi.org/10.1002/2017JC013534, 2018.
Arthern, R. J. and Wingham, D. J.: The Natural Fluctuations of Firn
Densification and Their Effect on the Geodetic Determination of Ice Sheet
Mass Balance, Clim. Change, 40, 605–624,
https://doi.org/10.1023/A:1005320713306, 1998.
Begeman, C. B., Tulaczyk, S., Padman, L., King, M., Siegfried, M. R.,
Hodson, T. O., and Fricker, H. A.: Tidal Pressurization of the Ocean Cavity
Near an Antarctic Ice Shelf Grounding Line, J. Geophys. Res.-Oceans, 125, e2019JC015562, https://doi.org/10.1029/2019JC015562, 2020.
Blewitt, G., Hammond, W. C., and Kreemer, C.:Harnessing the GPS data explosion for
interdisciplinary science, EOS, 99, https://doi.org/10.1029/2018EO104623, 2018.
Bromirski, P. D., Chen, Z., Stephen, R. A., Gerstoft, P., Arcas, D., Diez, A., Aster, R.
C., Wiens, D. A., and Nyblade, A.: Tsunami and infragravity waves impacting
Antarctic ice shelves, J. Geophys. Res.-Oceans, 122, 5786–5801,
https://doi.org/10.1002/2017JC012913, 2017.
Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law, The Cryosphere, 13, 177–195, https://doi.org/10.5194/tc-13-177-2019, 2019.
Brunt, K. M. and MacAyeal, D. R.: Tidal modulation of ice-shelf flow: a
viscous model of the Ross Ice Shelf, J. Glaciol., 60, 500–508,
https://doi.org/10.3189/2014JoG13J203, 2014.
Brunt, K. M., Fricker, H. A., and Padman, L.: Analysis of ice plains of the
Filchnerâ – Ronne Ice Shelf, Antarctica, using ICESat laser
altimetry, J. Glaciol., 57, 965–975,
https://doi.org/10.3189/002214311798043753, 2011.
Budd, W. F., Keage, P. L., and Blundy, N. A.: Empirical Studies of Ice Sliding,
J. Glaciol., 23, 157–170, https://doi.org/10.3189/S0022143000029804,
1979.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Academic Press, New
York, 2010.
Das, I., Padman, L., Bell, R. E., Fricker, H. A., Tinto, K. J., Hulbe, C.
L., Siddoway, C. S., Dhakal, T., Frearson, N. P., Mosbeux, C., Cordero, S.
I., and Siegfried, M. R.: Multidecadal Basal Melt Rates and Structure of the
Ross Ice Shelf, Antarctica, Using Airborne Ice Penetrating Radar, J. Geophys. Res.-Earth Surf., 125, e2019JF005241,
https://doi.org/10.1029/2019JF005241, 2020.
Davis, C. H. and Moore, R. K.: A combined surface-and volume-scattering
model for ice-sheet radar altimetry, J. Glaciol., 39, 675–686,
https://doi.org/10.3189/S0022143000016579, 1993.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C.
M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L.,
Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., and Dijken,
G. L. v.: Analysis of Iron Sources in Antarctic Continental Shelf Waters,
J. Geophys. Res.-Oceans, 125, e2019JC015736,
https://doi.org/10.1029/2019JC015736, 2020.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S.
H., Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong
Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability,
Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Merino, N., Tavard, L., Mouginot, J., Gourmelen, N., and Gagliardini, O.: Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points, The Cryosphere, 9, 1427–1443, https://doi.org/10.5194/tc-9-1427-2015, 2015.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Change, 6, 479–482, https://doi.org/10.1038/nclimate2912,
2016.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.
Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., and Liu, J.: Improving
the estimation of fractional-cycle biases for ambiguity resolution in precise point
positioning, J. Geod., 86, 579–589, https://doi.org/10.1007/s00190-011-0537-0, 2012.
Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., and Zhang, K.: PRIDE PPPAR:
an open-source software for GPS PPP ambiguity resolution, GPS Solut., 23, 91,
https://doi.org/10.1007/s10291-019-0888-1, 2019.
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012.
Gillet‐Chaulet, F., Durand, G., Gagliardini, O., Mosbeux, C., Mouginot, J., Rémy, F.,
and Ritz, C.: Assimilation of surface velocities acquired between 1996 and 2010 to
constrain the form of the basal friction law under Pine Island Glacier, Geophys.
Res. Lett., 43, 10311–10321, https://doi.org/10.1002/2016GL069937, 2016.
Glen, J. W.: The Creep of Polycrystalline Ice, P. Roy.
Soc. Lond. A, 228,
519–538, https://doi.org/10.1098/rspa.1955.0066, 1958.
Goring, D. G. and Pyne, A.: Observations of sea-level variability in Ross
Sea, Antarctica, New Zeal. J. Mar. Fresh., 37,
241–249, https://doi.org/10.1080/00288330.2003.9517162, 2003.
Greatbatch, R. J.: A note on the representation of steric sea level in
models that conserve volume rather than mass, J. Geophys. Res.-Oceans, 99, 12767–12771, https://doi.org/10.1029/94JC00847,
1994.
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
Greene, C. A., Gardner, A. S., and Andrews, L. C.: Detecting seasonal ice dynamics in satellite images, The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, 2020.
Gudmundsson, G. H.: Tides and the flow of Rutford Ice Stream, West Antarctica,
J. Geophys. Res.-Earth Surf., 112, F04007,
https://doi.org/10.1029/2006JF000731, 2007.
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013.
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., and Fricker, H. A.:
Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves,
Geophys. Res. Lett., 46, 13903–13909, https://doi.org/10.1029/2019GL085027,
2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S.,
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara,
G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R.,
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. de, Rozum,
I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S.
H., Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the
Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11,
733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018.
Joughin, I., Bindschadler, R. A., King, M. A., Voigt, D., Alley, R. B.,
Anandakrishnan, S., Horgan, H., Peters, L., Winberry, P., Das, S. B., and
Catania, G.: Continued deceleration of Whillans Ice Stream, West Antarctica,
Geophys. Res. Lett., 32, L22501, https://doi.org/10.1029/2005GL024319, 2005.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014.
Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction
Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 46, 4764–4771, https://doi.org/10.1029/2019GL082526,
2019.
Kazmierczak, E., Sun, S., Coulon, V., and Pattyn, F.: Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing, The Cryosphere, 16, 4537–4552, https://doi.org/10.5194/tc-16-4537-2022, 2022.
Klein, E., Mosbeux, C., Bromirski, P. D., Padman, L., Bock, Y., Springer, S.
R., and Fricker, H. A.: Annual cycle in flow of Ross Ice Shelf, Antarctica:
contribution of variable basal melting, J. Glaciol., 66, 861–875,
https://doi.org/10.1017/jog.2020.61, 2020.
Larour, E., Seroussi, H., Adhikari, S., Ivins, E., Caron, L., Morlighem, M., and
Schlegel, N.: Slowdown in Antarctic mass loss from solid Earth and sea-level
feedbacks, Science, 364, eaav7908, https://doi.org/10.1126/science.aav7908, 2019.
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory
and application to ice stream B, Antarctica, J. Geophys. Res.-Sol. Ea.,
94, 4071–4087, https://doi.org/10.1029/JB094iB04p04071, 1989.
Makinson, K., King, M. A., Nicholls, K. W., and Gudmundsson, G. H.: Diurnal
and semidiurnal tide-induced lateral movement of Ronne Ice Shelf,
Antarctica, Geophys. Res. Lett., 39, L10501, https://doi.org/10.1029/2012GL051636,
2012.
Mathiot, P., Jenkins, A., Harris, C., and Madec, G.: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6, Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, 2017.
Mellor, G. L. and Ezer, T.: Sea level variations induced by heating and
cooling: An evaluation of the Boussinesq approximation in ocean models,
J. Geophys. Res.-Oceans, 100, 20565–20577,
https://doi.org/10.1029/95JC02442, 1995.
Morland, L. W.: Dynamics of the West Antarctic Ice Sheet: Unconfined
Ice-Shelf Flow, Glaciology and Quaternary Geology, edited by: Van der Veen, C. J. and
Oerlemans, J., Springer Netherlands, https://doi.org/10.1007/978-94-009-3745-1, 1987.
Mosbeux, C., Gillet-Chaulet, F., and Gagliardini, O.: Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions, Geosci. Model Dev., 9, 2549–2562, https://doi.org/10.5194/gmd-9-2549-2016, 2016.
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., Hellmer, H. H., Hattermann, T., and Debernard, J. B.: Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4, Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, 2018.
Padman, L., Erofeeva, S., and Joughin, I.: Tides of the Ross Sea and Ross Ice
Shelf cavity, Antarct. Sci., 15, 31–40,
https://doi.org/10.1017/S0954102003001032, 2003.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S., and
Siegfried, M. R.: Response of Pacific-sector Antarctic ice shelves to the El
Nino/Southern Oscillation, Nat. Geosci., 1, 121–126,
https://doi.org/10.1038/s41561-017-0033-0, 2018.
Parish, T. R. and Bromwich, D. H.: On the forcing of seasonal changes in
surface pressure over Antarctica, J. Geophys. Res.-Atmos., 102, 13785–13792, https://doi.org/10.1029/96JD02959, 1997.
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C. A.,
Zwinger, T., Albrecht, T., Cornford, S., Docquier, D., Fürst, J. J., Goldberg, D.,
Gudmundsson, G. H., Humbert, A., Hütten, M., Huybrechts, P., Jouvet, G., Kleiner,
T., Larour, E., Martin, D., Morlighem, M., Payne, A. J., Pollard, D., Rückamp, M.,
Rybak, O., Seroussi, H., Thoma, M., and Wilkens, N.: Grounding-line migration in
plan-view marine ice-sheet models: results of the ice2sea MISMIP3d
intercomparison, J. Glaciol., 59, 410–422,
https://doi.org/10.3189/2013JoG12J129, 2013.
Ray, R., Larson, K., and Haines, B.: New determinations of tides on the north-western
Ross Ice Shelf, Antarct. Sci., 33, 89–102,
https://doi.org/10.1017/S0954102020000498, 2021.
Reese, R., Winkelmann, R., and Gudmundsson, G. H.: Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams, The Cryosphere, 12, 3229–3242, https://doi.org/10.5194/tc-12-3229-2018, 2018.
Richter, O., Gwyther, D. E., Galton-Fenzi, B. K., and Naughten, K. A.: The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation, Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, 2022.
Ridley, J. K. and Partingon, K. C.: A model of satellite radar altimeter return from ice
sheets, Int. J. Remote Sens., 9, 601–624,
https://doi.org/10.1080/01431168808954881, 1988.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336,
2011.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-based Antarctica Ice
Velocity map, Version 2. NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado, USA [data set],
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Robel, A. A., Wilson, E., and Seroussi, H.: Layered seawater intrusion and melt under grounded ice, The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, 2022.
Rosier, S. H. R. and Gudmundsson, G. H.: Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf, The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020, 2020.
Rosier, S. H. R., Gudmundsson, G. H., and Green, J. A. M.: Insights into ice stream dynamics through modelling their response to tidal forcing, The Cryosphere, 8, 1763–1775, https://doi.org/10.5194/tc-8-1763-2014, 2014.
Ruokolainen, J., Malinen, M., Råback, P., Zwinger, T., Takala, E., Kataja, J., Gillet-Chaulet, F., Ilvonen, S., Gladstone, R., Byckling, M., Chekki, M., Gong, C.,
Ponomarev, P., van Dongen, E., Robertsen, F., Wheel, I., Cook, S., t7saeki, luzpaz,
and Rich_B: ElmerCSC/elmerfem, Zenodo [code],
https://doi.org/10.5281/zenodo.7892181, 2023.
Rye, C. D., Naveira Garabato, A. C., Holland, P. R., Meredith, M. P., George
Nurser, A. J., Hughes, C., Coward, A. C., and Webb, D. J.: Rapid sea-level
rise along the Antarctic margins in response to increased glacial discharge,
Nat. Geosci, 7, 732–735, 2014.
Sayag, R. and Worster, M. G.: Elastic response of a grounded ice sheet coupled to a
floating ice shelf, Phys. Rev. E, 84, 036111,
https://doi.org/10.1103/PhysRevE.84.036111, 2011.
Sayag, R. and Worster, M. G.: Elastic dynamics and tidal migration of
grounding lines modify subglacial lubrication and melting, Geophys. Res.
Lett., 40, 5877–5881, https://doi.org/10.1002/2013GL057942, 2013.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B
embayment, Antarctica, Geophys. Res. Lett., 31, L18402,
https://doi.org/10.1029/2004GL020670, 2004.
Schoof, C.: The effect of cavitation on glacier sliding, P.
Roy. Soc. Lond. A,
461, 609–627, https://doi.org/10.1098/rspa.2004.1350, 2005.
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H.,
and Kristensen, S. S.: Ice flux divergence anomalies on 79north Glacier,
Greenland, Geophys. Res. Lett., 38, L09501,
https://doi.org/10.1029/2011GL047338, 2011.
Siegfried, M. R., Fricker, H. A., Roberts, M., Scambos, T. A., and Tulaczyk,
S.: A decade of West Antarctic subglacial lake interactions from combined
ICESat and CryoSat-2 altimetry, Geophys. Res. Lett., 41, 891–898,
https://doi.org/10.1002/2013GL058616, 2014a.
Siegfried, M. R., Fricker, H. A., and Tulaczyk, S.: Antarctica PI Continuous – GZ19-WIS_GroundingZone_19 P.S., The GAGE Facility operated by EarthScope Consortium, GPS/GNSS Observations [data set], https://doi.org/10.7283/T53R0RPD, 2014b.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science,
368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat.
Geosci., 1, 827–831, https://doi.org/10.1038/ngeo356, 2008.
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and
Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat
absorption in an ice-front polynya, Nat. Geosci., 12, 435–440,
https://doi.org/10.1038/s41561-019-0356-0, 2019.
Thomas, R., Scheuchl, B., Frederick, E., Harpold, R., Martin, C., and Rignot,
E.: Continued slowing of the Ross Ice Shelf and thickening of West Antarctic
ice streams, J. Glaciol., 59, 838–844,
https://doi.org/10.3189/2013JoG12J122, 2013.
Thomas, R. H.: Ice Shelves: A Review, J. Glaciol., 24, 273–286,
https://doi.org/10.3189/S0022143000014799, 1979.
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A.,
Das, I., Tontini, F. C., Porter, D. F., Frearson, N. P., Howard, S. L.,
Siegfried, M. R., Mosbeux, C., Becker, M. K., Bertinato, C., Boghosian, A.,
Brady, N., Burton, B. L., Chu, W., Cordero, S. I., Dhakal, T., Dong, L., Gustafson, C. D., Keeshin, S., Locke, C., Lockett, A., O'Brien, G., Spergel, J. J., Starke, S. E., Tankersley, M., Wearing, M. G., and Bell, R. E.: Ross Ice Shelf
response to climate driven by the tectonic imprint on seafloor bathymetry,
Nat. Geosci., 12, 441–449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
Tsai, V. C., Stewart, A. L., and Thompson, A. F.: Marine ice-sheet profiles
and stability under Coulomb basal conditions, J. Glaciol., 61, 205–215,
2015.
Tulaczyk, S., Mikucki, J. A., Siegfried, M. R., Priscu, J. C., Barcheck, C.
G., Beem, L. H., Behar, A., Burnett, J., Christner, B. C., Fisher, A. T.,
Fricker, H. A., Mankoff, K. D., Powell, R. D., Rack, F., Sampson, D.,
Scherer, R. P., Schwartz, S. Y., and Team, T. W. S.: WISSARD at Subglacial
Lake Whillans, West Antarctica: scientific operations and initial
observations, Ann. Glaciol., 55, 51–58,
https://doi.org/10.3189/2014AoG65A009, 2014.
Urruty, B., Hill, E. A., Reese, R., Garbe, J., Gagliardini, O., Durand, G., Gillet-Chaulet, F., Gudmundsson, G. H., Winkelmann, R., Chekki, M., Chandler, D., and Langebroek, P. M.: The stability of present-day Antarctic grounding lines – Part A: No indication of marine ice sheet instability in the current geometry, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-104, in review, 2022.
Velicogna, I., Sutterley, T. C., and Broeke, M. R. v. d.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137,
https://doi.org/10.1002/2014GL061052, 2014.
Walker, R. T., Parizek, B. R., Alley, R. B., Anandakrishnan, S., Riverman,
K. L., and Christianson, K.: Ice-shelf tidal flexure and subglacial pressure
variations, Earth Planet. Sc. Lett., 361, 422–428,
https://doi.org/10.1016/j.epsl.2012.11.008, 2013.
Weertman, J.: On the Sliding of Glaciers, J. Glaciol., 3, 33–38,
https://doi.org/10.3189/S0022143000024709, 1957.
Winberry, J. P., Anandakrishnan, S., Alley, R. B., Bindschadler, R. A., and
King, M. A.: Basal mechanics of ice streams: Insights from the stick-slip
motion of Whillans Ice Stream, West Antarctica, J. Geophys. Res.-Earth
Surf., 114,F01016, https://doi.org/10.1029/2008JF001035, 2009.
Yano, K.: The Theory of Lie Derivatives and its Applications, Courier Dover Publications, North-Holland,
Amsterdam, 1957.
Yuan, X., Qiao, G., and Li, Y.: 57-Year Ice Velocity Dynamics in Byrd Glacier Based
on Multisource Remote Sensing Data, IEEE J. Sel. Top. Appl.
Earth Obs., 16, 2711–2727,
https://doi.org/10.1109/JSTARS.2023.3250759, 2023.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb,
F. H.: Precise point positioning for the efficient and robust analysis of
GPS data from large networks, J. Geophys. Res.-Sol. Ea., 102,
5005–5017, https://doi.org/10.1029/96JB03860, 1997.
Zwally, H. J. and Jun, L.: Seasonal and interannual variations of firn
densification and ice-sheet surface elevation at the Greenland summit, J. Glaciol., 48, 199–207, https://doi.org/10.3189/172756502781831403, 2002.
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As...