Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1497-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1497-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Robert G. Bingham
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Duncan A. Young
Institute for Geophysics, University of Texas at Austin, Austin,
Texas, USA
Joseph A. MacGregor
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
David W. Ashmore
School of Environmental Sciences, University of Liverpool, Liverpool,
UK
Met Office, Exeter, UK
Enrica Quartini
Institute for Geophysics, University of Texas at Austin, Austin,
Texas, USA
Department of Astronomy, Cornell University, Ithaca, New York, USA
Andrew S. Hein
School of GeoSciences, University of Edinburgh, Edinburgh, UK
David G. Vaughan
British Antarctic Survey, Cambridge, UK
deceased
Donald D. Blankenship
Institute for Geophysics, University of Texas at Austin, Austin,
Texas, USA
Related authors
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025, https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Short summary
The study presents internal reflection horizons (IRHs) over an area of 450 000 km² from western Dronning Maud Land, Antarctica, spanning 4.8–91 ka. Using radar and ice core data, nine IRHs were dated and correlated with volcanic events. The data enhance our understanding of the ice sheet's age–depth architecture, accumulation, and dynamics. The findings inform ice flow models and contribute to Antarctic-wide comparisons of IRHs, supporting efforts toward a 3D age–depth ice sheet model.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Neil Ross, Rebecca J. Sanderson, Bernd Kulessa, Martin Siegert, Guy J. G. Paxman, Keir A. Nichols, Matthew R. Siegfried, Stewart S. R. Jamieson, Michael J. Bentley, Tom A. Jordan, Christine L. Batchelor, David Small, Olaf Eisen, Kate Winter, Robert G. Bingham, S. Louise Callard, Rachel Carr, Christine F. Dow, Helen A. Fricker, Emily Hill, Benjamin H. Hills, Coen Hofstede, Hafeez Jeofry, Felipe Napoleoni, and Wilson Sauthoff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3625, https://doi.org/10.5194/egusphere-2025-3625, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We review previous research into a group of fast-flowing Antarctic ice streams, the Foundation-Patuxent-Academy System. Previously, we knew relatively little how these ice streams flow, how they interact with the ocean, what their geological history was, and how they might evolve in a warming world. By reviewing existing information on these ice streams, we identify the future research needed to determine how they function, and their potential contribution to global sea level rise.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and be useful for GIS ice sheet modeling.
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data, 17, 2911–2931, https://doi.org/10.5194/essd-17-2911-2025, https://doi.org/10.5194/essd-17-2911-2025, 2025
Short summary
Short summary
This paper describes the second version of a deep radiostratigraphic database for the Greenland Ice Sheet. It includes numerous improvements to the original database from 2015 and includes newer high-quality radar sounding data from 2014–2019. It represents a unique and widespread constraint on the history of the ice sheet that could be helpful to initialize and interpret ice-sheet models.
Marc J. Sailer, Tyler J. Fudge, John D. Patterson, Shuai Yan, Duncan A. Young, Shivangini Singh, Don Blankenship, and Megan Kerr
EGUsphere, https://doi.org/10.5194/egusphere-2025-2104, https://doi.org/10.5194/egusphere-2025-2104, 2025
Short summary
Short summary
In this study, we model vertical atmospheric gas diffusion in ice older than 1 million years in the Antarctic ice sheet. We estimate climate signal preservation and help identify a potential region for a future deep ice core in East Antarctica. We find that regions with low accumulation rates and moderate ice thickness result in lower diffusion rates. In particular, the foothills of Dome A is a promising location for a deep ice core that extends the present ice core record.
Robert Law, Andreas Born, Philipp Voigt, Joseph A. MacGregor, and Claire Marie Guimond
EGUsphere, https://doi.org/10.48550/arXiv.2411.18779, https://doi.org/10.48550/arXiv.2411.18779, 2025
Short summary
Short summary
Convection has been previously, yet contentiously, suggested for ice sheets, but never before comprehensively explored using numerical models. We use mantle dynamics code to test the hypothesis that convection gives rise to enigmatic plume-like features observed in radio-stratigraphy observations of the Greenland Ice Sheet. Our results provide very good agreement with field observations, but could imply that ice in northern Greenland is significantly softer than commonly thought.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025, https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Short summary
The study presents internal reflection horizons (IRHs) over an area of 450 000 km² from western Dronning Maud Land, Antarctica, spanning 4.8–91 ka. Using radar and ice core data, nine IRHs were dated and correlated with volcanic events. The data enhance our understanding of the ice sheet's age–depth architecture, accumulation, and dynamics. The findings inform ice flow models and contribute to Antarctic-wide comparisons of IRHs, supporting efforts toward a 3D age–depth ice sheet model.
Bertie W. J. Miles, Tian Li, and Robert G. Bingham
EGUsphere, https://doi.org/10.5194/egusphere-2024-3964, https://doi.org/10.5194/egusphere-2024-3964, 2025
Short summary
Short summary
Totten Glacier is the largest source of mass loss in the East Antarctic Ice Sheet, with thinning detected since the 1990s, though the onset remains unclear. Ice-speed anomalies show no acceleration since 1973, confirming imbalance by the 1970s. A century-long record of surface undulations from Landsat imagery, linked to basal melt variability, reveals an anomalous mid-20th-century period with persistently high melt rates, possibly indicating the onset time of ice shelf thinning.
Tyler Pelle, Paul G. Myers, Andrew Hamilton, Matthew Mazloff, Krista Soderlund, Lucas Beem, Donald D. Blankenship, Cyril Grima, Feras Habbal, Mark Skidmore, and Jamin S. Greenbaum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3751, https://doi.org/10.5194/egusphere-2024-3751, 2024
Short summary
Short summary
Here, we develop and run a high resolution ocean model of Jones Sound from 2003–2016 and characterize circulation into, out of, and within the sound as well as associated sea ice and productivity cycles. Atmospheric and ocean warming drive sea ice decline, which enhance biological productivity due to the increased light availability. These results highlight the utility of high resolution models in simulating complex waterways and the need for sustained oceanographic measurements in the sound.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024, https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary
Short summary
Ice shelves are a key control on Antarctic contribution to sea level rise. We examine the Nansen Ice Shelf in East Antarctica using a combination of field-based and satellite data. We find the basal topography of the ice shelf is highly variable, only partially visible in satellite datasets. We also find that the thinnest region of the ice shelf is altered over time by ice flow rates and ocean melting. These processes can cause fractures to form that eventually result in large calving events.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Kristian Chan, Cyril Grima, Anja Rutishauser, Duncan A. Young, Riley Culberg, and Donald D. Blankenship
The Cryosphere, 17, 1839–1852, https://doi.org/10.5194/tc-17-1839-2023, https://doi.org/10.5194/tc-17-1839-2023, 2023
Short summary
Short summary
Climate warming has led to more surface meltwater produced on glaciers that can refreeze in firn to form ice layers. Our work evaluates the use of dual-frequency ice-penetrating radar to characterize these ice layers on the Devon Ice Cap. Results indicate that they are meters thick and widespread, and thus capable of supporting lateral meltwater runoff from the top of ice layers. We find that some of this meltwater runoff could be routed through supraglacial rivers in the ablation zone.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Tancrède P. M. Leger, Andrew S. Hein, Ángel Rodés, Robert G. Bingham, Irene Schimmelpfennig, Derek Fabel, Pablo Tapia, and ASTER Team
Clim. Past, 19, 35–59, https://doi.org/10.5194/cp-19-35-2023, https://doi.org/10.5194/cp-19-35-2023, 2023
Short summary
Short summary
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022, https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
Joseph A. MacGregor, Winnie Chu, William T. Colgan, Mark A. Fahnestock, Denis Felikson, Nanna B. Karlsson, Sophie M. J. Nowicki, and Michael Studinger
The Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022, https://doi.org/10.5194/tc-16-3033-2022, 2022
Short summary
Short summary
Where the bottom of the Greenland Ice Sheet is frozen and where it is thawed is not well known, yet knowing this state is increasingly important to interpret modern changes in ice flow there. We produced a second synthesis of knowledge of the basal thermal state of the ice sheet using airborne and satellite observations and numerical models. About one-third of the ice sheet’s bed is likely thawed; two-fifths is likely frozen; and the remainder is too uncertain to specify.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Anja Rutishauser, Donald D. Blankenship, Duncan A. Young, Natalie S. Wolfenbarger, Lucas H. Beem, Mark L. Skidmore, Ashley Dubnick, and Alison S. Criscitiello
The Cryosphere, 16, 379–395, https://doi.org/10.5194/tc-16-379-2022, https://doi.org/10.5194/tc-16-379-2022, 2022
Short summary
Short summary
Recently, a hypersaline subglacial lake complex was hypothesized to lie beneath Devon Ice Cap, Canadian Arctic. Here, we present results from a follow-on targeted aerogeophysical survey. Our results support the evidence for a hypersaline subglacial lake and reveal an extensive brine network, suggesting more complex subglacial hydrological conditions than previously inferred. This hypersaline system may host microbial habitats, making it a compelling analog for bines on other icy worlds.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Joseph A. MacGregor, Michael Studinger, Emily Arnold, Carlton J. Leuschen, Fernando Rodríguez-Morales, and John D. Paden
The Cryosphere, 15, 2569–2574, https://doi.org/10.5194/tc-15-2569-2021, https://doi.org/10.5194/tc-15-2569-2021, 2021
Short summary
Short summary
We combine multiple recent global glacier datasets and extend one of them (GlaThiDa) to evaluate past performance of radar-sounding surveys of the thickness of Earth's temperate glaciers. An empirical envelope for radar performance as a function of center frequency is determined, its limitations are discussed and its relevance to future radar-sounder survey and system designs is considered.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Lucas H. Beem, Duncan A. Young, Jamin S. Greenbaum, Donald D. Blankenship, Marie G. P. Cavitte, Jingxue Guo, and Sun Bo
The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021, https://doi.org/10.5194/tc-15-1719-2021, 2021
Short summary
Short summary
Radar observation collected above Titan Dome of the East Antarctic Ice Sheet is used to describe ice geometry and test a hypothesis that ice beneath the dome is older than 1 million years. An important climate transition occurred between 1.25 million and 700 thousand years ago, and if ice old enough to study this period can be removed as an ice core, new insights into climate dynamics are expected. The new observations suggest the ice is too young – more likely 300 to 800 thousand years old.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Cited articles
Arndt, J. E., Hillenbrand, C. D., Grobe, H., Kuhn, G., and Wacker, L.: Evidence
for a dynamic grounding line in outer Filchner Trough, Antarctica, until the
early Holocene, Geology, 45, 1035–1038,
https://doi.org/10.1130/G39398.1, 2017.
Ashmore, D. W., Bingham, R. G., Ross, N., Siegert, M. J., Jordan, T. A., and
Mair, D. W.: Englacial architecture and age-depth constraints across the West
Antarctic Ice Sheet, Geophys. Res. Lett., 47, e2019GL086663,
https://doi.org/10.1029/2019GL086663, 2020a.
Ashmore, D. W., Bingham, R. G., Ross, N., Siegert, M., Jordan, T. A., and Mair,
D. W. F.: Radiostratigraphy of the Weddell Sea sector of West Antarctica,
v2.0.0, Zenodo [data set], https://doi.org/10.5281/zenodo.4945301, 2020b.
Balco, G., Brown, N., Nichols, K., Venturelli, R. A., Adams, J., Braddock, S., Campbell, S., Goehring, B., Johnson, J. S., Rood, D. H., Wilcken, K., Hall, B., and Woodward, J.: Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-172, in review, 2022.
Beem, L. H., Young, D. A., Greenbaum, J. S., Blankenship, D. D., Cavitte, M. G. P., Guo, J., and Bo, S.: Aerogeophysical characterization of Titan Dome, East Antarctica, and potential as an ice core target, The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021, 2021.
Bingham, R. G. and Siegert, M. J.: Radio-echo sounding over polar ice masses,
J. Environ. Eng. Geoph., 12, 47–62, https://doi.org/10.2113/JEEG12.1.47,
2007.
Bodart, J. A., Bingham, R. G., Ashmore, D. W., Karlsson, N. B., Hein, A. S.,
and Vaughan, D. G.: Age-depth stratigraphy of Pine Island Glacier inferred
from airborne radar and ice core chronology, J. Geophys. Res.-Earth, 126,
e2020JF005927, https://doi.org/10.1029/2020JF005927, 2021a.
Bodart, J. A., Bingham, R. G., Ashmore, D. W., Karlsson, N. B., Hein, A. S., and
Vaughan, D. G.: Dated radar stratigraphy of the Pine Island Glacier catchment
(West Antarctica) derived from BBAS-PASIN (2004–05) and OIB-MCoRDS2
(2016/2018) surveys, v.1.0.0, UK Polar Data Centre, Natural Environment
Research Council, UK Research and Innovation [data set],
https://doi.org/10.5285/F2DE31AF-9F83-44F8-9584-F0190A2CC3EB, 2021b.
Bodart, J. A., Bingham, R. G., Young, D. A., MacGregor, J. A., Ashmore, D. W.,
Quartini, E., Vaughan, D. G., and Blankenship, D. D.: Gridded depth and
accumulation products from dated airborne radar stratigraphy over West
Antarctica during the mid-Holocene, v.1.0.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.7738654, 2023.
Bracegirdle, T. J., Colleoni, F., Abram, N. J., Bertler, N. A., Dixon, D. A.,
England, M., Favier, V., Fogwill, C. J., Fyfe, J. C., Goodwin, I., and Goosse,
H.: Back to the future: Using long-term observational and palaeo-proxy
reconstructions to improve model projections of Antarctic climate, Geosci.
J., 9, 255, https://doi.org/10.3390/geosciences9060255, 2019.
Braddock, S., Hall, B. L., Johnson, J. S., Balco, G., Spoth, M., Whitehouse,
P. L., Campbell, S., Goehring, B. M., Rood, D. H., and Woodward, J.: Relative
sea-level data preclude major late Holocene ice-mass change in Pine Island
Bay, Nat. Geosci., 15, 568–572, https://doi.org/10.1038/s41561-022-00961-y,
2022.
Bradley, S. L., Hindmarsh, R. C., Whitehouse, P. L., Bentley, M. J., and King,
M. A.: Low post-glacial rebound rates in the Weddell Sea due to Late Holocene
ice-sheet readvance, Earth Planet. Sc. Lett., 413, 79–89,
https://doi.org/10.1016/j.epsl.2014.12.039, 2015.
Buizert, C., Fudge, T. J., Roberts, W. H., Steig, E. J., Sherriff-Tadano, S.,
Ritz, C., Lefebvre, E., Edwards, J., Kawamura, K., Oyabu, I., and Motoyama,
H.: Antarctic surface temperature and elevation during the Last Glacial
Maximum, Science, 372, 1097–1101,
https://doi.org/10.1126/science.abd2897, 2021.
Burgener, L., Rupper, S., Koenig, L., Forster, R., Christensen, W. F.,
Williams, J., Koutnik, M., Miege, C., Steig, E. J., Tingey, D., and Keeler,
D.: An observed negative trend in West Antarctic accumulation rates from
1975 to 2010: Evidence from new observed and simulated records, J. Geophys.
Res.-Atmos., 118, 4205–4216, https://doi.org/10.1002/jgrd.50362, 2013.
Cavitte, M. G., Blankenship, D. D., Young, D. A., Schroeder, D. M., Parrenin,
F., Lemeur, E., Macgregor, J. A., and Siegert, M. J.: Deep radiostratigraphy of
the East Antarctic plateau: connecting the Dome C and Vostok ice core sites,
J. Glaciol., 62, 323–334, https://doi.org/10.1017/jog.2016.11, 2016.
Cavitte, M. G. P., Parrenin, F., Ritz, C., Young, D. A., Van Liefferinge, B., Blankenship, D. D., Frezzotti, M., and Roberts, J. L.: Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr, The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, 2018.
Cavitte, M. G., Goosse, H., Wauthy, S., Kausch, T., Tison, J. L., Van
Liefferinge, B., Pattyn, F., Lenaerts, J. T., and Claeys, P.: From ice core to
ground-penetrating radar: representativeness of SMB at three ice rises along
the Princess Ragnhild Coast, East Antarctica, J. Glaciol., 68,
1221–1233, https://doi.org/10.1017/jog.2022.39, 2022.
Chavaillaz, Y., Codron, F., and Kageyama, M.: Southern westerlies in LGM and future (RCP4.5) climates, Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, 2013.
Cole-Dai, J., Ferris, D. G., Kennedy, J. A., Sigl, M., McConnell, J. R., Fudge,
T. J., Geng, L., Maselli, O. J., Taylor, K. C., and Souney, J. M.: Comprehensive
record of volcanic eruptions in the Holocene (11,000 years) from the WAIS
Divide, Antarctica ice core, J. Geophys. Res.-Atmos., 126,
e2020JD032855, https://doi.org/10.1029/2020JD032855, 2021.
Conway, H. and Rasmussen, L. A.: Recent thinning and migration of the Western Divide, central West Antarctica, Geophys. Res. Let., 36, https://doi.org/10.1029/2009GL038072, 2009.
Corr, H. F., Ferraccioli, F., Frearson, N., Jordan, T., Robinson, C.,
Armadillo, E., Caneva, G., Bozzo, E., and Tabacco, I.: Airborne radio-echo
sounding of the Wilkes Subglacial Basin, the Transantarctic Mountains and
the Dome C region, Terra Ant. Rep., 13, 55–63,
2007.
CReSIS: CReSIS Radar Depth Sounder Data, Lawrence, Kansas, USA, Digital
Media, http://data.cresis.ku.edu/ (last access: 15 October 2022), 2018.
Dansgaard, W. and Johnsen, S. J.: A flow model and a time scale for the ice
core from Camp Century, Greenland, J. Glaciol., 8, 215–223,
https://doi.org/10.3189/S0022143000031208, 1969.
Dattler, M. E., Lenaerts, J. T., and Medley, B.: Significant spatial
variability in radar-derived west Antarctic accumulation linked to surface
winds and topography, Geophys. Res. Lett., 46, 13126–13134,
https://doi.org/10.1029/2019GL085363, 2019.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597,
https://doi.org/10.1038/nature17145, 2016.
Denton, G. H. and Hughes, T. J.: Reconstructing the Antarctic ice sheet at the
Last Glacial Maximum, Quaternary Sci. Rev., 21, 193–202,
https://doi.org/10.1016/S0277-3791(01)00090-7, 2002.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.:
High geoSthermal heat flow, basal melt, and the origin of rapid ice flow in
central Greenland, Science, 294, 2338–2342,
https://doi.org/10.1126/science.1065370, 2001a.
Fahnestock, M., Abdalati, W., Luo, S., and Gogineni, S.: Internal layer
tracing and age-depth-accumulation relationships for the northern Greenland
ice sheet, J. Geophys. Res.-Atmos, 106, 33789–33797,
https://doi.org/10.1029/2001JD900200, 2001b.
Favier, V., Agosta, C., Parouty, S., Durand, G., Delaygue, G., Gallée, H., Drouet, A.-S., Trouvilliez, A., and Krinner, G.: An updated and quality controlled surface mass balance dataset for Antarctica, The Cryosphere, 7, 583–597, https://doi.org/10.5194/tc-7-583-2013, 2013.
Frémand, A. C., Bodart, J. A., Jordan, T. A., Ferraccioli, F., Robinson, C., Corr, H. F. J., Peat, H. J., Bingham, R. G., and Vaughan, D. G.: British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica, Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, 2022.
Fudge, T. J., Markle, B. R., Cuffey, K. M., Buizert, C., Taylor, K. C., Steig,
E. J., Waddington, E. D., Conway, H., and Koutnik, M.: Variable relationship
between accumulation and temperature in West Antarctica for the past 31,000
years, Geophys. Res. Lett., 43, 3795–3803,
https://doi.org/10.1002/2016GL068356, 2016.
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.: Dynamics
of the last glacial maximum Antarctic ice-sheet and its response to ocean
forcing, P. Natl. Acad. Sci. USA, 109, 16052–16056,
https://doi.org/10.1073/pnas.1205385109, 2012.
Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A., Graham,
A. G., Smith, J. A., Hillenbrand, C. D., Licht, K. J., Denton, G. H., and Ackert
Jr., R. P.: Glaciology and geological signature of the Last Glacial Maximum
Antarctic ice sheet, Quaternary Sci. Rev., 78, 225–247,
https://doi.org/10.1016/j.quascirev.2013.08.011, 2013.
Haran, T., Klinger, M., Bohlander, J., Fahnestock, M., Painter, T., and
Scambos, T.: MEaSUREs MODIS Mosaic of Antarctica 2013–2014 (MOA2014) Image Map,
v.1.0.0., NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/RNF17BP824UM, 2018.
Harrison, C. H.: Radio Echo Sounding of Horizontal Layers in Ice, J.
Glaciol., 12, 383–397, https://doi.org/10.3189/S0022143000031804, 1973.
Hein, A. S., Marrero, S. M., Woodward, J., Dunning, S. A., Winter, K., Westoby,
M. J., Freeman, S. P., Shanks, R. P., and Sugden, D. E.: Mid-Holocene pulse of
thinning in the Weddell Sea sector of the West Antarctic ice sheet, Nat.
Commun., 7, 1–8, https://doi.org/10.1038/ncomms12511, 2016.
Hillenbrand, C. D., Kuhn, G., Smith, J. A., Gohl, K., Graham, A. G., Larter,
R. D., Klages, J. P., Downey, R., Moreton, S. G., Forwick, M., and Vaughan,
D. G.: Grounding-line retreat of the west Antarctic ice sheet from inner Pine
island Bay, Geology, 41, 35–38, https://doi.org/10.1130/G33469.1, 2013.
Hillenbrand, C. D., Bentley, M. J., Stolldorf, T. D., Hein, A. S., Kuhn, G.,
Graham, A. G., Fogwill, C. J., Kristoffersen, Y., Smith, J. A., Anderson, J. B.,
and Larter, R. D.: Reconstruction of changes in the Weddell Sea sector of the
Antarctic Ice Sheet since the Last Glacial Maximum, Quaternary Sci. Rev.,
100, 111–136, https://doi.org/10.1016/j.quascirev.2013.07.020, 2014.
Hillenbrand, C. D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R.,
Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., Elderfield, H., and
Klages, J. P.: West Antarctic Ice Sheet retreat driven by Holocene warm water
incursions, Nature, 547, 43–48, https://doi.org/10.1038/nature22995,
2017.
Holschuh, N., Parizek, B. R., Alley, R. B., and Anandakrishnan, S.: Decoding
ice sheet behavior using englacial layer slopes, Geophys. Res. Lett.,
44, 5561–5570, https://doi.org/10.1002/2017GL073417, 2017.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F.: New boundary
conditions for the West Antarctic Ice Sheet: Subglacial topography of the
Thwaites and Smith glacier catchments, Geophys. Res. Lett., 33, L09502,
https://doi.org/10.1029/2005GL025561, 2006.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani,
A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,
L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
147–286, https://doi.org/10.1017/9781009157896.003, in press, 2021.
Jacobel, R. W. and Welch, B. C.: A time marker at 17.5 kyr BP detected
throughout West Antarctica, Ann. Glaciol., 41, 47–51,
https://doi.org/10.3189/172756405781813348, 2005.
Johnson, J. S., Bentley, M. J., Smith, J. A., Finkel, R. C., Rood, D. H., Gohl,
K., Balco, G., Larter, R. D., and Schaefer, J. M.: Rapid thinning of Pine
Island Glacier in the early Holocene, Science, 343, 999–1001,
https://doi.org/10.1126/science.1247385, 2014.
Johnson, J. S., Roberts, S. J., Rood, D. H., Pollard, D., Schaefer, J. M.,
Whitehouse, P. L., Ireland, L. C., Lamp, J. L., Goehring, B. M., Rand, C., and
Smith, J. A.: Deglaciation of Pope Glacier implies widespread early Holocene
ice sheet thinning in the Amundsen Sea sector of Antarctica, Earth Planet
Sc. Lett., 548, 116501, https://doi.org/10.1016/j.epsl.2020.116501, 2020.
Johnson, J. S., Pollard, D., Whitehouse, P. L., Roberts, S. J., Rood, D. H., and
Schaefer, J. M.: Comparing glacial-geological evidence and model simulations
of ice sheet change since the last glacial period in the Amundsen Sea sector
of Antarctica, J. Geophys. Res.-Earth, 126, e2020JF005827,
https://doi.org/10.1029/2020JF005827, 2021.
Johnson, J. S., Venturelli, R. A., Balco, G., Allen, C. S., Braddock, S., Campbell, S., Goehring, B. M., Hall, B. L., Neff, P. D., Nichols, K. A., Rood, D. H., Thomas, E. R., and Woodward, J.: Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica, The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, 2022.
Jones, R. S., Johnson, J. S., Lin, Y., Mackintosh, A. N., Sefton, J. P., Smith,
J. A., Thomas, E. R., and Whitehouse, P. L.: Stability of the Antarctic Ice
Sheet during the pre-industrial Holocene, Nat. Rev. Earth Environ., 3,
500–515, https://doi.org/10.1038/s43017-022-00309-5, 2022.
Karlsson, N. B., Bingham, R. G., Rippin, D. M., Hindmarsh, R. C., Corr, H.
F., and Vaughan, D. G.: Constraining past accumulation in the central Pine
Island Glacier basin, West Antarctica, using radio-echo sounding, J.
Glaciol., 60, 553–562, https://doi.org/10.3189/2014JoG13j180, 2014.
Kausch, T., Lhermitte, S., Lenaerts, J. T. M., Wever, N., Inoue, M., Pattyn, F., Sun, S., Wauthy, S., Tison, J.-L., and van de Berg, W. J.: Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling, The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, 2020.
Kingslake, J., Scherer, R. P., Albrecht, T., Coenen, J., Powell, R. D., Reese,
R., Stansell, N. D., Tulaczyk, S., Wearing, M. G., and Whitehouse, P. L.:
Extensive retreat and re-advance of the West Antarctic Ice Sheet during the
Holocene, Nature, 558, 430–434,
https://doi.org/10.1038/s41586-018-0208-x, 2018.
Koutnik, M. R., Fudge, T. J., Conway, H., Waddington, E. D., Neumann, T. A.,
Cuffey, K. M., Buizert, C., and Taylor, K. C.: Holocene accumulation and ice
flow near the West Antarctic Ice Sheet Divide ice core site, J. Geophys.
Res.-Earth, 121, 907–924, https://doi.org/10.1002/2015JF003668, 2016.
Kurbatov, A. V., Zielinski, G. A., Dunbar, N. W., Mayewski, P. A., Meyerson,
E. A., Sneed, S. B., and Taylor, K. C.: A 12,000 year record of explosive
volcanism in the Siple Dome Ice Core, West Antarctica, J. Geophys.
Res.-Atmos., 111, D12307, https://doi.org/10.1029/2005JD006072, 2006.
Le Brocq, A. M., Bentley, M. J., Hubbard, A., Fogwill, C. J., Sugden, D. E., and
Whitehouse, P. L.: Reconstructing the Last Glacial Maximum ice sheet in the
Weddell Sea embayment, Antarctica, using numerical modelling constrained by
field evidence, Quaternary Sci. Rev., 30, 2422–2432,
https://doi.org/10.1016/j.quascirev.2011.05.009, 2011.
Leysinger Vieli, G. J. M., Siegert, M. J., and Payne, A. J.: Reconstructing
ice-sheet accumulation rates at ridge B, East Antarctica, Ann. Glaciol., 39,
326–330, https://doi.org/10.3189/172756404781814519, 2004.
Leysinger Vieli, G. J. M., Hindmarsh, R. C., Siegert, M. J., and Bo, S.:
Time-dependence of the spatial pattern of accumulation rate in East
Antarctica deduced from isochronic radar layers using a 3-D numerical ice
flow model, J. Geophys. Res.-Earth, 116, F02018,
https://doi.org/10.1029/2010JF001785, 2011.
MacGregor, J. A., Matsuoka, K., Koutnik, M. R., Waddington, E. D., Studinger,
M., and Winebrenner, D. P.: Millennially averaged accumulation rates for the
Vostok Subglacial Lake region inferred from deep internal layers, Ann.
Glaciol., 50, 25–34, https://doi.org/10.3189/172756409789097441, 2009.
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Paden, J. D., Prasad Gogineni, S., Young, S. K., Rybarski, S. C., Mabrey, A. N., Wagman, B. M., and Morlighem, M.: Radiostratigraphy and age structure of the Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 120, 212–241, https://doi.org/10.1002/2014JF003215, 2015.
MacGregor, J. A., Colgan, W. T., Fahnestock, M. A., Morlighem, M., Catania,
G. A., Paden, J. D., and Gogineni, S. P.: Holocene deceleration of the
Greenland ice sheet, Science, 351, 590–593,
https://doi.org/10.1126/science.aab1702, 2016.
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P.,
Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth, E., Buckley, E.,M.,
Christoffersen, M. S., and Cochran, J. R.: The scientific legacy of NASA's
Operation Icebridge, Rev. Geophys., 59, e2020RG000712,
https://doi.org/10.1029/2020RG000712, 2021.
Mayewski, P. A. and Dixon, D. A.: US International TransAntarctic Scientific
Expedition (US ITASE) Glaciochemical Data, v. 2.0.0., NASA National Snow and
Ice Data Center [data set], https://doi.org/10.7265/N51V5BXR, 2013.
Medley, B., Joughin, I., Das, S. B., Steig, E. J., Conway, H., Gogineni, S.,
Criscitiello, A. S., McConnell, J. R., Smith, B. E., van den Broeke, M. R., and
Lenaerts, J. T.: Airborne-radar and ice-core observations of annual snow
accumulation over Thwaites Glacier, West Antarctica confirm the
spatiotemporal variability of global and regional atmospheric models,
Geophys. Res. Lett., 40, 3649–3654,
https://doi.org/10.1002/grl.50706, 2013.
Medley, B., Joughin, I., Smith, B. E., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Lewis, C., Criscitiello, A. S., McConnell, J. R., van den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., Nicolas, J. P., and Leuschen, C.: Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation, The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, 2014.
Morlighem, M.: MEaSUREs BedMachine Antarctica, v.2.0.0., NASA National Snow
and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., and Goel, V.: Deep
glacial troughs and stabilizing ridges unveiled beneath the margins of the
Antarctic ice sheet, Nat. Geo., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Scheuchl, B., and Rignot., E.: MEaSUREs Antarctic Boundaries
for IPY 2007–2009 from Satellite Radar, v.2.0.0., NASA National Snow and Ice
Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/AXE4121732AD, 2017.
Muldoon, G. R., Jackson, C. S., Young, D. A., and Blankenship, D. D.:
Bayesian estimation of englacial radar chronology in Central West
Antarctica, Dynamics and Statistics of the Climate System, 3, dzy004,
https://doi.org/10.1093/climatesystem/dzy004, 2018.
Muldoon, G., Blankenship, D. D., Jackson, C., and Young, D. A.: AGASEA 4.7
ka Englacial Isochron over the Thwaites Glacier Catchment, U.S. Antarctic
Program (USAP) Data Center [data set], https://doi.org/10.15784/601673,
2023.
Neuhaus, S. U., Tulaczyk, S. M., Stansell, N. D., Coenen, J. J., Scherer, R. P., Mikucki, J. A., and Powell, R. D.: Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?, The Cryosphere, 15, 4655–4673, https://doi.org/10.5194/tc-15-4655-2021, 2021.
Neumann, T. A., Conway, H., Price, S. F., Waddington, E. D., Catania, G. A.,
and Morse, D. L.: Holocene accumulation and ice sheet dynamics in central
West Antarctica, J. Geophys. Res.-Earth, 113, F02018,
https://doi.org/10.1029/2007JF000764, 2008.
Nichols, K. A., Goehring, B. M., Balco, G., Johnson, J. S., Hein, A. S., and Todd, C.: New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica, The Cryosphere, 13, 2935–2951, https://doi.org/10.5194/tc-13-2935-2019, 2019.
Nielsen, L. T., Karlsson, N. B., and Hvidberg, C. S.: Large-scale reconstruction
of accumulation rates in northern Greenland from radar data, Ann. Glaciol.,
56, 70–78 https://doi.org/10.3189/2015AoG70A062, 2015.
Nye, J. F.: The distribution of stress and velocity in glaciers and
ice-sheets, P. Roy. Soc. Lond. A. Mat., 239, 113–133,
https://doi.org/10.1098/rspa.1957.0026, 1957.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007.
Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., and
Holt, J. W.: Along-track focusing of airborne radar sounding data from West
Antarctica for improving basal reflection analysis and layer detection, IEEE
T. Geosci. Remote, 45,
2725–2736, https://doi.org/10.1109/TGRS.2007.897416, 2007.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., and Delmotte, M.:
Climate and atmospheric history of the past 420,000 years from the Vostok
ice core, Antarctica, Nature, 399, 429–436,
https://doi.org/10.1038/20859, 1999.
RAISED Consortium: A community-based geological reconstruction of Antarctic
Ice Sheet deglaciation since the Last Glacial Maximum, Quaternary Sci. Rev.,
100, 1–9, https://doi.org/10.1016/j.quascirev.2014.06.025, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-based Antarctica
ice velocity map, v.2.0.0., NASA National Snow and Ice Data Center
Distributed Active Archive Center [data set],
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Ross, N., Siegert, M. J., Woodward, J., Smith, A. M., Corr, H. F., Bentley,
M. J., Hindmarsh, R. C., King, E. C., and Rivera, A.: Holocene stability of the
Amundsen-Weddell ice divide, West Antarctica, Geology, 39, 935–938,
https://doi.org/10.1130/G31920.1, 2011.
Ross, N., Bingham, R. G., Corr, H. F., Ferraccioli, F., Jordan, T. A., Le
Brocq, A., Rippin, D. M., Young, D., Blankenship, D. D., and Siegert, M. J.:
Steep reverse bed slope at the grounding line of the Weddell Sea sector in
West Antarctica, Nat. Geosci., 5, 393–396,
https://doi.org/10.1038/ngeo1468, 2012.
Siegert, M. J. and Payne, A. J.: Past rates of accumulation in central West
Antarctica, Geophys. Res. Lett., 31, L12403,
https://doi.org/10.1029/2004GL020290, 2004.
Siegert, M., Ross, N., Corr, H., Kingslake, J., and Hindmarsh, R.: Late
Holocene ice-flow reconfiguration in the Weddell Sea sector of West
Antarctica, Quaternary Sci. Rev., 78, 98–107,
https://doi.org/10.1016/j.quascirev.2013.08.003, 2013.
Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J., and Severi, M.: Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array, Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, 2022.
Spector, P., Stone, J., and Goehring, B.: Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation, The Cryosphere, 13, 3061–3075, https://doi.org/10.5194/tc-13-3061-2019, 2019.
Sproson, A. D., Yokoyama, Y., Miyairi, Y., Aze, T., and Totten, R. L.: Holocene
melting of the West Antarctic Ice Sheet driven by tropical Pacific warming,
Nat. Commun., 13, 1–9, https://doi.org/10.1038/s41467-022-30076-2, 2022.
Steig, E. J., Fastook, J. L., Zweck, C., Goodwin, I. D., Licht, K. J., White,
J. W., and Ackert Jr., R. P.: West Antarctic ice sheet elevation changes, The
West Antarctic Ice Sheet: Behavior and Environment, 77, 75–90,
https://doi.org/10.1029/AR077p0075, 2001.
Stone, J. O., Balco, G. A., Sugden, D. E., Caffee, M. W., Sass III, L. C.,
Cowdery, S. G., and Siddoway, C.: Holocene deglaciation of Marie Byrd land,
west Antarctica, Science, 299, 99–102,
https://doi.org/10.1126/science.1077998, 2003.
Suganuma, Y., Miura, H., Zondervan, A., and Okuno, J. I.: East Antarctic
deglaciation and the link to global cooling during the Quaternary: Evidence
from glacial geomorphology and 10Be surface exposure dating of the Sør
Rondane Mountains, Dronning Maud Land, Quaternary Sci. Rev., 97, 102–120,
https://doi.org/10.1016/j.quascirev.2014.05.007, 2014.
Sutter, J., Fischer, H., and Eisen, O.: Investigating the internal structure of the Antarctic ice sheet: the utility of isochrones for spatiotemporal ice-sheet model calibration, The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, 2021.
Van Den Broeke, M. R. and Van Lipzig, N. P.: Changes in Antarctic temperature,
wind and precipitation in response to the Antarctic Oscillation, Ann.
Glaciol., 39, 119–126, https://doi.org/10.3189/172756404781814654, 2004.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
Vaughan, D. G., Corr, H. F., Ferraccioli, F., Frearson, N., O'Hare, A., Mach,
D., Holt, J. W., Blankenship, D. D., Morse, D. L., and Young, D. A.: New boundary
conditions for the West Antarctic ice sheet: Subglacial topography beneath
Pine Island Glacier, Geophys. Res. Lett., 33, L09501,
https://doi.org/10.1029/2005GL025588, 2006.
Venturelli, R. A., Siegfried, M. R., Roush, K. A., Li, W., Burnett, J., Zook,
R., Fricker, H. A., Priscu, J. C., Leventer, A., and Rosenheim, B. E.:
Mid-Holocene grounding line retreat and readvance at Whillans Ice Stream,
West Antarctica, Geophys. Res. Lett., 47, e2020GL088476,
https://doi.org/10.1029/2020GL088476, 2020.
Waddington, E. D., Neumann, T. A., Koutnik, M. R., Marshall, H.-P., and
Morse, D. L.: Inference of accumulation-rate patterns from deep layers in
glaciers and ice sheets, J. Glaciol., 53, 694–712,
https://doi.org/10.3189/002214307784409351, 2007.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica
driven by local orbital forcing, Nature, 500, 440–444,
https://doi.org/10.1038/nature12376, 2013.
Wearing, M. G. and Kingslake, J.: Holocene Formation of Henry Ice Rise, West
Antarctica, Inferred from Ice-Penetrating Radar, J. Geophys. Res.-Earth, 124, 2224–2240, https://doi.org/10.1029/2018JF004988, 2019.
Whillans, I. M.: Radio-echo layers and the recent stability of the West
Antarctic ice sheet, Nature, 264, 152,
https://doi.org/10.1038/264152a0, 1976.
Winter, A., Steinhage, D., Creyts, T. T., Kleiner, T., and Eisen, O.: Age stratigraphy in the East Antarctic Ice Sheet inferred from radio-echo sounding horizons, Earth Syst. Sci. Data, 11, 1069–1081, https://doi.org/10.5194/essd-11-1069-2019, 2019.
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Estimating how West Antarctica will change in response to future climatic change depends on our...