Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-5085-2022
https://doi.org/10.5194/tc-16-5085-2022
Research article
 | 
22 Dec 2022
Research article |  | 22 Dec 2022

Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries

Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith

Related authors

Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024,https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Brief Communication: Antarctic sea ice loss brings observed trends into agreement with climate models
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2881,https://doi.org/10.5194/egusphere-2023-2881, 2023
Short summary
Characteristics and rarity of the strong 1940s westerly wind event over the Amundsen Sea, West Antarctica
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023,https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023,https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J.​​​​​​​ Payne, Jeff K.​​​​​​​ Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022,https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Melt sensitivity of irreversible retreat of Pine Island Glacier
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024,https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024,https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
The long-term sea-level commitment from Antarctica
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024,https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary
The influence of present-day regional surface mass balance uncertainties on the future evolution of the Antarctic Ice Sheet
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024,https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024,https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary

Cited articles

Agosta, C., Fettweis, X., and Datta, R.: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance, The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015, 2015. 
Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to Southern Annular Mode trends, J. Climate, 19, 2896–2905, https://doi.org/10.1175/Jcli3774.1, 2006. 
Barnes, E. A., Barnes, N. W., and Polvani, L. M.: Delayed Southern Hemisphere Climate Change Induced by Stratospheric Ozone Recovery, as Projected by the CMIP5 Models, J. Climate, 27, 852–867, https://doi.org/10.1175/Jcli-D-13-00246.1, 2014. 
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. 
Bett, D. T., Holland, P. R., Naveira Garabato, A. C., Jenkins, A., Dutrieux, P., Kimura, S., and Fleming, A.: The impact of the Amundsen Sea freshwater balance on ocean melting of the West Antarctic Ice Sheet, J. Geophys. Res., 125, e2020JC016305, https://doi.org/10.1029/2020JC016305, 2020. 
Download
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.