Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-5061-2022
https://doi.org/10.5194/tc-16-5061-2022
Research article
 | 
21 Dec 2022
Research article |  | 21 Dec 2022

The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack

Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni

Related authors

Inter-annual snow accumulation and meter-scale variability from trench measurements at Dome C, Antarctica
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259,https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Multiproxy analyses of multiple firn cores from coastal Adélie Land covering the last 40 years
Titouan Tcheng, Elise Fourré, Christophe Leroy-Dos-Santos, Frédéric Parrenin, Emmanuel Le Meur, Frédéric Prié, Olivier Jossoud, Roxanne Jacob, Bénédicte Minster, Olivier Magand, Cécile Agosta, Niels Dutrievoz, Vincent Favier, Léa Baubant, Coralie Lassalle-Bernard, Mathieu Casado, Martin Werner, Alexandre Cauquoin, Laurent Arnaud, Bruno Jourdain, Ghislain Picard, Marie Bouchet, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2025-2863,https://doi.org/10.5194/egusphere-2025-2863, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Impact of shrub branches on the shortwave vertical irradiance profile in snow
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
The Cryosphere, 19, 1757–1774, https://doi.org/10.5194/tc-19-1757-2025,https://doi.org/10.5194/tc-19-1757-2025, 2025
Short summary
Active-passive microwave scattering in the Antarctica wind-glazed region: an analog for icy moons of Saturn
Léa Elise Bonnefoy, Catherine Prigent, Ghislain Picard, Clément Soriot, Alice Le Gall, Lise Kilic, and Carlos Jimenez
EGUsphere, https://doi.org/10.5194/egusphere-2024-3972,https://doi.org/10.5194/egusphere-2024-3972, 2025
Short summary
Empirical classification of dry-wet snow status in Antarctica using multi-frequency passive microwave observations
Marion Leduc-Leballeur, Ghislain Picard, Pierre Zeiger, and Giovanni Macelloni
EGUsphere, https://doi.org/10.5194/egusphere-2025-732,https://doi.org/10.5194/egusphere-2025-732, 2025
Short summary

Cited articles

Abdalati, W. and Steffen, K.: Snowmelt on the Greenland Ice Sheet as Derived from Passive Microwave Satellite Data, J. Climate, 10, 165–175, 1997. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017 (data available at: https://data.catds.fr/cpdc/Common_products/GRIDDED/L3/RE07/MIR_CDF3TS/, last access: 14 March 2022). a, b
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020. a
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., Leeson, A. A., and Verjans, V.: Large interannual variability in supraglacial lakes around East Antarctica, Nat. Commun., 13, 1711, https://doi.org/10.1038/s41467-022-29385-3, 2022. a
Download
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Share