Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-4887-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4887-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New 10Be exposure ages improve Holocene ice sheet thinning history near the grounding line of Pope Glacier, Antarctica
Jonathan R. Adams
CORRESPONDING AUTHOR
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET,
UK
Department of Earth Science & Engineering, Imperial College London,
London SW7 2AZ, UK
Joanne S. Johnson
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET,
UK
Stephen J. Roberts
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET,
UK
Philippa J. Mason
Department of Earth Science & Engineering, Imperial College London,
London SW7 2AZ, UK
Keir A. Nichols
Department of Earth Science & Engineering, Imperial College London,
London SW7 2AZ, UK
Ryan A. Venturelli
Department of Geology and Geological Engineering, Colorado School of
Mines, Golden, CO 80401, USA
Klaus Wilcken
Australian Nuclear Science and Technology Organization (ANSTO), New
Illawarra Road, Lucas Heights, NSW 2234, Australia
Greg Balco
Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
Brent Goehring
Department of Earth & Environmental Sciences, Tulane University, New
Orleans, LA 70118, USA
Brenda Hall
School of Earth and Climate Sciences and the Climate Change Institute,
University of Maine, Orono, ME 04469, USA
John Woodward
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle-upon-Tyne NE1 8ST, UK
Dylan H. Rood
Department of Earth Science & Engineering, Imperial College London,
London SW7 2AZ, UK
Related authors
Jonathan R. Adams, Dylan H. Rood, Klaus Wilcken, Stephen J. Roberts, and Joanne S. Johnson
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-34, https://doi.org/10.5194/gchron-2024-34, 2024
Revised manuscript under review for GChron
Short summary
Short summary
Ice sheet mass loss is adding to sea-level rise, and is expected to increase, but by how much and how fast remains uncertain. Isotopes produced in rock at the Earth’s surface provide records of past ice sheet thinning which help predict future change but are more effective if they are precise enough to determine past changes to the nearest thousand years. The precision of carbon-14, an isotope which is guaranteed to record past change since the last ice age, can be improved.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Neil Ross, Rebecca J. Sanderson, Bernd Kulessa, Martin Siegert, Guy J. G. Paxman, Keir A. Nichols, Matthew R. Siegfried, Stewart S. R. Jamieson, Michael J. Bentley, Tom A. Jordan, Christine L. Batchelor, David Small, Olaf Eisen, Kate Winter, Robert G. Bingham, S. Louise Callard, Rachel Carr, Christine F. Dow, Helen A. Fricker, Emily Hill, Benjamin H. Hills, Coen Hofstede, Hafeez Jeofry, Felipe Napoleoni, and Wilson Sauthoff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3625, https://doi.org/10.5194/egusphere-2025-3625, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We review previous research into a group of fast-flowing Antarctic ice streams, the Foundation-Patuxent-Academy System. Previously, we knew relatively little how these ice streams flow, how they interact with the ocean, what their geological history was, and how they might evolve in a warming world. By reviewing existing information on these ice streams, we identify the future research needed to determine how they function, and their potential contribution to global sea level rise.
Greg Balco
Geochronology, 7, 247–253, https://doi.org/10.5194/gchron-7-247-2025, https://doi.org/10.5194/gchron-7-247-2025, 2025
Short summary
Short summary
This paper describes measurements of cosmogenic neon-21 concentrations in a widely distributed mineral standard material that is routinely used for quality control and interlaboratory comparison for measurements of other cosmic-ray-produced nuclides useful for various geochronology applications. Broadly, this facilitates improvement of precision and accuracy of these measurements and their applications in geochronology.
Marie Bergelin, Greg Balco, and Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-3033, https://doi.org/10.5194/egusphere-2025-3033, 2025
Short summary
Short summary
We developed a faster and simpler way to measure helium gas in rocks to determine how long they have been exposed at Earth's surface. Instead of separating minerals within the rocks by hand, our method uses heat to release gas from specific minerals. This reduces time, cost, and physical work, making it easier to collect large amounts of data when studying landscape change or when only small rock samples are available.
Anna Ruth W. Halberstadt and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2008, https://doi.org/10.5194/egusphere-2025-2008, 2025
Short summary
Short summary
We developed a new framework for testing how well computer models of the Antarctic ice sheet match geological measurements of past ice thinning. By using more data and higher-spatial-resolution modeling, we improve how well models capture complex regions. Our approach also makes it easier to include new data as they become available. We describe multiple metrics for comparing models and data. This can help scientists better understand how the ice sheet changed in the past.
Marie Bergelin, Andrew Gorin, Greg Balco, and William Cassata
EGUsphere, https://doi.org/10.5194/egusphere-2025-928, https://doi.org/10.5194/egusphere-2025-928, 2025
Short summary
Short summary
Helium gas accumulates over time in minerals, but loss can occur depending on temperature. If partially retained, its loss can potentially be used for determining past surface temperatures. This study uses a model that accounts for complex gas loss to analyze helium retention in two minerals commonly found on the surface of Antarctica. We find one of the minerals retains helium while the other loses nearly all of the gas within hundred years, making it unsuitable as a climate reconstruction.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
The Cryosphere, 19, 303–324, https://doi.org/10.5194/tc-19-303-2025, https://doi.org/10.5194/tc-19-303-2025, 2025
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples, and ground-penetrating radar) to assess the suitability for subglacial drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak (74.86°S, 99.77°W).
Gordon R. M. Bromley, Greg Balco, Margaret S. Jackson, Allie Balter-Kennedy, and Holly Thomas
Clim. Past, 21, 145–160, https://doi.org/10.5194/cp-21-145-2025, https://doi.org/10.5194/cp-21-145-2025, 2025
Short summary
Short summary
We constructed a geologic record of East Antarctic Ice Sheet thickness from deposits at Otway Massif to directly assess how Earth's largest ice sheet responds to warmer-than-present climate. Our record confirms the long-term dominance of a cold polar climate but lacks a clear ice sheet response to the mid-Pliocene Warm Period, a common analogue for the future. Instead, an absence of moraines from the late Miocene–early Pliocene suggests the ice sheet was less extensive than present at that time.
Jonathan R. Adams, Dylan H. Rood, Klaus Wilcken, Stephen J. Roberts, and Joanne S. Johnson
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-34, https://doi.org/10.5194/gchron-2024-34, 2024
Revised manuscript under review for GChron
Short summary
Short summary
Ice sheet mass loss is adding to sea-level rise, and is expected to increase, but by how much and how fast remains uncertain. Isotopes produced in rock at the Earth’s surface provide records of past ice sheet thinning which help predict future change but are more effective if they are precise enough to determine past changes to the nearest thousand years. The precision of carbon-14, an isotope which is guaranteed to record past change since the last ice age, can be improved.
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024, https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Short summary
Cosmogenic nuclide exposure dating is an exceptional tool for reconstructing glacier histories, but reconstructions based on common target nuclides (e.g., 10Be) can be costly and time-consuming to generate. Here, we present a cost-effective proof-of-concept 21Ne exposure age chronology from Lassen Volcanic National Park, CA, USA, that broadly agrees with nearby 10Be chronologies but at lower precision.
Greg Balco, Andrew J. Conant, Dallas D. Reilly, Dallin Barton, Chelsea D. Willett, and Brett H. Isselhardt
Geochronology, 6, 571–584, https://doi.org/10.5194/gchron-6-571-2024, https://doi.org/10.5194/gchron-6-571-2024, 2024
Short summary
Short summary
This paper describes how krypton isotopes produced by nuclear fission can be used to determine the age of microscopic particles of used nuclear fuel. This is potentially useful for international safeguard applications aimed at tracking and identifying nuclear materials, as well as geoscience applications involving dating post-1950s sediments or understanding environmental transport of nuclear materials.
Nicolas Bakken-French, Stephen J. Boyer, B. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
The Cryosphere, 18, 4517–4530, https://doi.org/10.5194/tc-18-4517-2024, https://doi.org/10.5194/tc-18-4517-2024, 2024
Short summary
Short summary
Repeat photography, field mapping, and remote sensing find that glaciers on Mt. Hood, Oregon, have lost about 25 % of their area in the first 2 decades of the 21st century and 17 % of their area in the last 7–8 years. The 21st century recession rate is more than 3 times faster than the 20th century average and 1.9 times faster than the fastest period of retreat within the 20th century. This unprecedented retreat corresponds to regional summer warming of 1.7–1.8°C relative to the early 1900s.
Allie Balter-Kennedy, Joerg M. Schaefer, Greg Balco, Meredith A. Kelly, Michael R. Kaplan, Roseanne Schwartz, Bryan Oakley, Nicolás E. Young, Jean Hanley, and Arianna M. Varuolo-Clarke
Clim. Past, 20, 2167–2190, https://doi.org/10.5194/cp-20-2167-2024, https://doi.org/10.5194/cp-20-2167-2024, 2024
Short summary
Short summary
We date sedimentary deposits showing that the southeastern Laurentide Ice Sheet was at or near its southernmost extent from ~ 26 000 to 21 000 years ago, when sea levels were at their lowest, with climate records indicating glacial conditions. Slow deglaciation began ~ 22 000 years ago, shown by a rise in modeled local summer temperatures, but significant deglaciation in the region did not begin until ~ 18 000 years ago, when atmospheric CO2 began to rise, marking the end of the last ice age.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
H. Y. Li, J. A. Lawrence, P. J. Mason, and R. C. Ghail
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1411–1416, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1411-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1411-2023, 2023
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector
The Cryosphere, 17, 1623–1643, https://doi.org/10.5194/tc-17-1623-2023, https://doi.org/10.5194/tc-17-1623-2023, 2023
Short summary
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Brent M. Goehring, Brian Menounos, Gerald Osborn, Adam Hawkins, and Brent Ward
Geochronology, 4, 311–322, https://doi.org/10.5194/gchron-4-311-2022, https://doi.org/10.5194/gchron-4-311-2022, 2022
Short summary
Short summary
We explored surface exposure dating with two nuclides to date two sets of moraines from the Yukon Territory and explain the reasoning for the observed ages. Results suggest multiple processes, including preservation of nuclides from a prior exposure period, and later erosion of the moraines is required to explain the data. Our results only allow for the older moraines to date to Marine Isotope Stage 3 or 4 and the younger moraines to date to the very earliest Holocene.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021, https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Kate Winter, Emily A. Hill, G. Hilmar Gudmundsson, and John Woodward
Earth Syst. Sci. Data, 12, 3453–3467, https://doi.org/10.5194/essd-12-3453-2020, https://doi.org/10.5194/essd-12-3453-2020, 2020
Short summary
Short summary
Satellite measurements of the English Coast in the Antarctic Peninsula reveal that glaciers are thinning and losing mass, but ice thickness data are required to assess these changes, in terms of ice flux and sea level contribution. Our ice-penetrating radar measurements reveal that low-elevation subglacial channels control fast-flowing ice streams, which release over 39 Gt of ice per year to floating ice shelves. This topography could make ice flows susceptible to future instability.
Cited articles
Ackert, R. P., Barclay, D. J., Borns, H. W., Calkin, P. E., Kurz, M. D.,
Fastook, J. L., and Steig, E. J.: Measurements of past ice sheet elevations
in interior West Antarctica, Science, 286, 276–280,
https://doi.org/10.1126/science.286.5438.276, 1999.
Adams, J. R., Rood, D. H., Wilcken, K., Roberts, S. J., and Johnson J. S.: Beryllium-10 exposure ages for Pope Glacier from a scoria cone 1.5 km west of Mount Murphy in the Amundsen Sea Embayment (Version 1.0), NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/8F275626-5F22-48DF-95E5-CDC8F204A897, 2022.
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M.
R.: Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020.
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G.,
Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R.,
Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.:
The international bathymetric chart of the Southern Ocean (IBCSO) version
1.0-A new bathymetric compilation covering circum-Antarctic waters, Geophys.
Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013.
Balco, G.: Contributions and unrealized potential contributions of
cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010, Quat.
Sci. Rev., 30, 3–27, https://doi.org/10.1016/j.quascirev.2010.11.003, 2011.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be
and 26Al benchmarked against geological calibration data, Quat. Geochronol.,
39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195
https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R.
M.: Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 166, 11195–11200,
https://doi.org/10.1073/pnas.1817205116, 2019.
Bentley, M. J.: The Antarctic palaeo record and its role in improving
predictions of future Antarctic Ice Sheet change, J. Quat. Sci., 25, 5–18,
https://doi.org/10.1002/jqs.1287, 2010.
Boeckmann, G. V., Gibson, C. J., Kuhl, T. W., Moravec, E., Johnson, J. A.,
Meulemans, Z., and Slawny, K.: Adaptation of the Winkie Drill for subglacial
bedrock sampling, Ann. Glaciol., 62, 109–117,
https://doi.org/10.1017/AOG.2020.73, 2021.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological
calibration of spallation production rates in the CRONUS-Earth project,
Quat. Geochronol., 31, 188–198,
https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Corbett, L. B., Bierman, P. R., and Rood, D. H.: An approach for optimizing
in situ cosmogenic 10Be sample preparation, Quat. Geochronol., 33, 24–34,
https://doi.org/10.1016/j.quageo.2016.02.001, 2016.
Darvill, C. M., Bentley, M. J., and Stokes, C. R.: Geomorphology and
weathering characteristics of erratic boulder trains on Tierra del Fuego,
southernmost South America: Implications for dating of glacial deposits,
Geomorphology, 228, 382–397,
https://doi.org/10.1016/j.geomorph.2014.09.017, 2015.
Earth Resources Observation and Science (EROS) Center: USGS EROS Archive – Landsat Archives – Landsat 8-9 OLI/TIRS Collection 2 Level-2 Science Products, USGS [data set], https://doi.org/10.5066/P9OGBGM6, 2020.
Heyman, J., Stroeven, A. P., Harbor, J. M., and Caffee, M. W.: Too young or
too old: Evaluating cosmogenic exposure dating based on an analysis of
compiled boulder exposure ages, Earth Planet. Sci. Lett., 302, 71–80,
https://doi.org/10.1016/j.epsl.2010.11.040, 2011.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Johnson, J. S., Bentley, M. J., and Gohl, K.: First exposure ages from the
Amundsen Sea Embayment, West Antarctica: The Late Quaternary context for
recent thinning of Pine Island, Smith, and Pope Glaciers, Geology, 36,
223–226, https://doi.org/10.1130/G24207A.1, 2008.
Johnson, J. S., Bentley, M. J., Smith, J. A., Finkel, R. C., Rood, D. H.,
Gohl, K., Balco, G., Larter, R. D., and Schaefer, J. M.: Rapid thinning of
Pine Island glacier in the early Holocene, Science, 343, 999–1001,
https://doi.org/10.1126/science.1247385, 2014.
Johnson, J. S., Smith, J. A., Schaefer, J. M., Young, N. E., Goehring, B.
M., Hillenbrand, C. D., Lamp, J. L., Finkel, R. C., and Gohl, K.: The last
glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica:
Constraints on timing and duration revealed by in situ cosmogenic 14C and
10Be dating, Quat. Sci. Rev., 178, 77–88,
https://doi.org/10.1016/j.quascirev.2017.11.003, 2017.
Johnson, J. S., Roberts, S. J., Rood, D. H., Pollard, D., Schaefer, J. M.,
Whitehouse, P. L., Ireland, L. C., Lamp, J. L., Goehring, B. M., Rand, C.,
and Smith, J. A.: Deglaciation of Pope Glacier implies widespread early
Holocene ice sheet thinning in the Amundsen Sea sector of Antarctica, Earth
Planet. Sci. Lett., 548, 116501, https://doi.org/10.1016/j.epsl.2020.116501,
2020.
Johnson, J. S., Pollard, D., Whitehouse, P. L., Roberts, S.J., Rood, D. H., and Schaefer, J. M.: Comparing Glacial-Geological Evidence and Model Simulations of Ice Sheet
Change since the Last Glacial Period in the Amundsen Sea Sector of Antarctica, J. Geophys. Res.-Earth Surf., 126, e2020JF005827,
https://doi.org/10.1029/2020JF005827, 2021.
Johnson, J. S., Venturelli, R. A., Balco, G., Allen, C. S., Braddock, S., Campbell, S., Goehring, B. M., Hall, B. L., Neff, P. D., Nichols, K. A., Rood, D. H., Thomas, E. R., and Woodward, J.: Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica, The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, 2022.
Jones, R. S., Small, D., Cahill, N., Bentley, M. J., and Whitehouse, P. L.:
iceTEA: Tools for plotting and analysing cosmogenic-nuclide surface-exposure
data from former ice margins, Quat. Geochronol., 51, 72–86,
https://doi.org/10.1016/j.quageo.2019.01.001, 2019.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement
of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56,
3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat.
Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sci. Lett., 386, 149–160,
https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lindow, J., Castex, M., Wittmann, H., Johnson, J. S., Lisker, F., Gohl, K.,
and Spiegel, C.: Glacial retreat in the Amundsen Sea sector, West Antarctica
– first cosmogenic evidence from central Pine Island Bay and the Kohler
Range, Quat. Sci. Rev., 98, 166–173,
https://doi.org/10.1016/j.quascirev.2014.05.010, 2014.
Lowell, T. V.: The application of radiocarbon age estimates to the dating of
glacial sequences: An example from the Miami sublobe, Ohio, U.S.A., Quat.
Sci. Rev., 14, 85–99, https://doi.org/10.1016/0277-3791(94)00113-P, 1995.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J. L., Prats-Iraola, P., and Dini, L.: Rapid glacier retreat
rates observed in West Antarctica, Nat. Geosci., 15, 48–53,
https://doi.org/10.1038/S41561-021-00877-Z, 2022.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. va. den, Ommen, T. D. va., Wessem, M. van, and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of Ice Motion in
Antarctica Using Synthetic-Aperture Radar Data, Remote Sens., 4, 2753–2767,
https://doi.org/10.3390/rs4092753, 2012.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl.
Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms,
258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level
Rise and Implications for Low-Lying Islands, Coasts and Communities, in:
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Abe-Ouchi, A., Gupta, K., and Pereira, J., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 321–445,
https://doi.org/10.1017/9781009157964.006, 2022.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458, 329–332,
https://doi.org/10.1038/nature07809, 2009.
Pollard, D., Chang, W., Haran, M., Applegate, P., and DeConto, R.: Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques, Geosci. Model Dev., 9, 1697–1723, https://doi.org/10.5194/gmd-9-1697-2016, 2016.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.:
Extensive dynamic thinning on the margins of the Greenland and Antarctic ice
sheets, Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van
Den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505,
https://doi.org/10.1038/nature10968, 2012.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38,
1–6, https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic ice sheet mass balance from
1979–2017, P. Natl. Acad. Sci., 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116,
2019.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater,
T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in
Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett., 46, 8174–8183,
https://doi.org/10.1029/2019GL082182, 2019.
Small, D., Bentley, M. J., Jon-es, R. S., Pittard, M. L., and Whitehouse, P.
L.: Antarctic ice sheet palaeo-thinning rates from vertical transects of
cosmogenic exposure ages, Quat. Sci. Rev., 206, 65–80,
https://doi.org/10.1016/j.quascirev.2018.12.024, 2019.
Sproson, A. D., Yokoyama, Y., Miyairi, Y., Aze, T., and Totten, R. L.:
Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific
warming, Nat. Commun., 13, 2434, https://doi.org/10.1038/s41467-022-30076-2,
2022.
Stone, J. O., Balco, G. A., Sugden, D. E., Caffee, M. W., Sass, L. C.,
Cowdery, S. G., and Siddoway, C.: Holocene deglaciation of Marie Byrd Land,
West Antarctica, Science, 299, 99–102,
https://doi.org/10.1126/science.1077998, 2003.
Wilcken, K. M., Fink, D., Hotchkis, M. A. C., Garton, D., Button, D., Mann,
M., Kitchen, R., Hauser, T., and O'Connor, A.: Accelerator Mass Spectrometry
on SIRIUS: New 6MV spectrometer at ANSTO, Nucl. Instruments Methods Phys.
Res. Sect. B Beam Interact. with Mater. Atoms, 406, 278–282,
https://doi.org/10.1016/J.NIMB.2017.01.003, 2017.
Short summary
Glaciers in West Antarctica are experiencing significant ice loss. Geological data provide historical context for ongoing ice loss in West Antarctica, including constraints on likely future ice sheet behaviour in response to climatic warming. We present evidence from rare isotopes measured in rocks collected from an outcrop next to Pope Glacier. These data suggest that Pope Glacier thinned faster and sooner after the last ice age than previously thought.
Glaciers in West Antarctica are experiencing significant ice loss. Geological data provide...