Articles | Volume 16, issue 11
https://doi.org/10.5194/tc-16-4701-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4701-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Institute of Environmental Engineering, ETH Zürich, Zurich,
8092, Switzerland
Evan S. Miles
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Pascal Buri
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Stefan Fugger
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Institute of Environmental Engineering, ETH Zürich, Zurich,
8092, Switzerland
Michael McCarthy
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Thomas E. Shaw
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Zhao Chuanxi
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, 100045, China
Martin Truffer
Geophysical Institute, University of Alaska
Fairbanks, Fairbanks, AK 99775, USA
Matthew J. Westoby
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, NE1 8ST, UK
Wei Yang
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, 100045, China
Francesca Pellicciotti
High Mountain Glaciers and Hydrology Group, Swiss Federal Institute,
WSL, Birmensdorf, 8903, Switzerland
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, NE1 8ST, UK
Related authors
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kevin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1741, https://doi.org/10.5194/egusphere-2025-1741, 2025
Short summary
Short summary
Saharan dust deposits frequently color alpine glaciers orange. Mineral dust reduces snow albedo and increases snow and glaciers melt rate. Using physical modeling, we quantified the impact of dust on the Argentière Glacier over the period 2019–2022. We found that that the contribution of mineral dust to the melt represents between 6 and 12 % of Argentière Glacier summer melt. At specific locations, the impact of dust over one year can rise to an equivalent of 1 meter of melted ice.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Douglas J. Brinkerhoff, Brandon S. Tober, Michael Daniel, Victor Devaux-Chupin, Michael S. Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell C. Mitchell, and Martin Truffer
The Cryosphere, 19, 2321–2353, https://doi.org/10.5194/tc-19-2321-2025, https://doi.org/10.5194/tc-19-2321-2025, 2025
Short summary
Short summary
Sít' Tlein is one of the largest glaciers in the world outside of the polar regions, and we know that it has been rapidly thinning. To forecast how this glacier will change in the future, we combine a computer model of ice flow with measurements from many different sources. Our model tells us that with high probability, Sít' Tlein's lower reaches are going to disappear in the next century and a half, creating a new bay or lake along Alaska's coastline.
Zihao Li, Qiuyu Wang, Huan Xu, Wei Yang, and Wenke Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1772, https://doi.org/10.5194/egusphere-2025-1772, 2025
Short summary
Short summary
Our results show a steady retreat of glaciers in southeastern Tibet from 2000 to 2022, with an average annual loss of 85.03 ± 7.60 km². The retreat rate accelerated after 2010, increasing from 57.72 ± 16.81 km² to 97.72 ± 17.67 km² per year. The annual mass loss was calculated at 6.20 ± 0.22 gigatons. These findings underline the urgent need for continued monitoring of glacier dynamics due to climate change.
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kevin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1741, https://doi.org/10.5194/egusphere-2025-1741, 2025
Short summary
Short summary
Saharan dust deposits frequently color alpine glaciers orange. Mineral dust reduces snow albedo and increases snow and glaciers melt rate. Using physical modeling, we quantified the impact of dust on the Argentière Glacier over the period 2019–2022. We found that that the contribution of mineral dust to the melt represents between 6 and 12 % of Argentière Glacier summer melt. At specific locations, the impact of dust over one year can rise to an equivalent of 1 meter of melted ice.
Tong Zhang, Wei Yang, Yuzhe Wang, Chuanxi Zhao, Qingyun Long, and Cunde Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-659, https://doi.org/10.5194/egusphere-2025-659, 2025
Short summary
Short summary
This study investigates the 2018 Sedongpu glacier detachment in Southeastern Tibet using a two-dimensional ice flow model that includes an ice stiffness and basal slip positive feedback mechanism. The model simulates rapid transitions in glacier flow, triggering detachment when ice stress exceeds yield strength. The results, including ice speed and duration, align with observations, demonstrating the potential for early warning of similar hazards in the region.
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025, https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste than by overall mass loss over the entire glacier surface.
Adrià Fontrodona-Bach, Lars Groeneveld, Evan Miles, Michael McCarthy, Thomas Shaw, Vicente Melo Velasco, and Francesca Pellicciotti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-559, https://doi.org/10.5194/essd-2024-559, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Glaciers with a layer of rocky debris on their surfaces are distinct from clean ice glaciers, with debris mostly insulating the glacier ice. However, debris data is scarce. We present DebDab, a database of debris thickness and physical properties of debris, with data from 83 glaciers in 13 global glacier regions, compiled from 172 sources and including previously unpublished data. DebDab serves as an open central repository for the scientific community to do research on debris-covered glaciers.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Orie Sasaki, Evan Stewart Miles, Francesca Pellicciotti, Akiko Sakai, and Koji Fujita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2026, https://doi.org/10.5194/egusphere-2024-2026, 2024
Short summary
Short summary
This study proposes a new method to detect snowline altitude (SLA) using the Google Earth Engine platform with high-resolution satellite imagery, applicable anywhere in the world. Applying this method to five glaciated watersheds in the Himalayas reveals regional consistencies and differences in snow dynamics. We also investigate the primary controls of these dynamics by analyzing climatic factors and topographic characteristics.
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Preprint archived
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
He Sun, Tandong Yao, Fengge Su, Wei Yang, Guifeng Huang, and Deliang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-16, https://doi.org/10.5194/hess-2023-16, 2023
Manuscript not accepted for further review
Short summary
Short summary
Based on field research campaigns since 2017 in the Yarlung Zangbo (YZ) river basin and a well-validated model, our results reveal that large regional differences in runoff regimes and changes exist in the basin. Annual runoff shows decreasing trend in the downstream sub-basin but increasing trends in the upper and middle sub-basins, due to opposing precipitation changes. Glacier runoff plays more important role in annual total runoff in downstream basin.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021, https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Cited articles
Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates, The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, 2021.
Armstrong, L., Lacelle, D., Fraser, R. H., Kokelj, S., and Knudby, A.: Thaw
slump activity measured using stationary cameras in time-lapse and
Structure-from-Motion photogrammetry, Antarct. Sci., 4, 827–845,
https://doi.org/10.1139/as-2018-0016, 2018.
Bartlett, O. T., Ng, F. S. L., and Rowan, A. V.: Morphology and evolution of
supraglacial hummocks on debris-covered Himalayan glaciers, Earth Surf.
Proc. Land., 46, esp.5043, https://doi.org/10.1002/esp.5043, 2020.
Beyer, R. A., Alexandrov, O., and McMichael, S.: The Ames Stereo Pipeline:
NASA's Open Source Software for Deriving and Processing Terrain Data, Earth
Sp. Sci., 5, 537–548, https://doi.org/10.1029/2018EA000409, 2018.
Bonekamp, P. N. J., van Heerwaarden, C. C., Steiner, J. F., and Immerzeel, W. W.: Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier, The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, 2020.
Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E.,
Ragettli, S., Kraaijenbrink, P., Immerzeel, W. W., and Pellicciotti, F.:
Quantifying volume loss from ice cliffs on debris-covered glaciers using
high-resolution terrestrial and aerial photogrammetry, J. Glaciol., 62, 684–695,
https://doi.org/10.1017/jog.2016.54, 2016.
Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., Shrestha, D., and Arnaud, Y.: Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya, The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, 2018.
Buri, P. and Pellicciotti, F.: Aspect controls the survival of ice cliffs on
debris-covered glaciers, P. Natl. Acad. Sci. USA, 115, 4369–4374,
https://doi.org/10.1073/pnas.1713892115, 2018.
Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S., and Immerzeel, W.
W.: A grid-based model of backwasting of supraglacial ice cliffs on
debris-covered glaciers, Ann. Glaciol., 57, 199–211,
https://doi.org/10.3189/2016AoG71A059, 2016a.
Buri, P., Miles, E. S., Steiner, J. F., Immerzeel, W. W., Wagnon, P., and
Pellicciotti, F.: A physically based 3-D model of ice cliff evolution over
debris-covered glaciers, J. Geophys. Res.-Earth, 121, 2471–2493,
https://doi.org/10.1002/2016JF004039, 2016b.
Buri, P., Miles, E. S., Steiner, J. F., Ragettli, S., and Pellicciotti, F.:
Supraglacial Ice Cliffs Can Substantially Increase the Mass Loss of
Debris-Covered Glaciers, Geophys. Res. Lett., 48, e2020GL092150,
https://doi.org/10.1029/2020GL092150, 2021.
Corripio, J. G.: Snow surface albedo estimation using terrestrial
photography, Int. J. Remote Sens., 25, 5705–5729,
https://doi.org/10.1080/01431160410001709002, 2004.
Falaschi, D., Rivera, A., Lo Vecchio Repetto, A., Moragues, S., Villalba,
R., Rastner, P., Zeller, J., and Salcedo, A. P.: Evolution of Surface
Characteristics of Three Debris-Covered Glaciers in the Patagonian Andes
From 1958 to 2020, Front. Earth Sci., 9,
https://doi.org/10.3389/feart.2021.671854, 2021.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Ferguson, J. C. and Vieli, A.: Modelling steady states and the transient response of debris-covered glaciers, The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, 2021.
Filhol, S., Perret, A., Girod, L., Sutter, G., Schuler, T. V., and Burkhart,
J. F.: Time-Lapse Photogrammetry of Distributed Snow Depth During Snowmelt,
Water Resour. Res., 55, 7916–7926, https://doi.org/10.1029/2018WR024530,
2019.
Fugger, S., Fyffe, C. L., Fatichi, S., Miles, E., McCarthy, M., Shaw, T. E., Ding, B., Yang, W., Wagnon, P., Immerzeel, W., Liu, Q., and Pellicciotti, F.: Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya, The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, 2022.
Fyffe, C. L., Woodget, A. S., Kirkbride, M. P., Deline, P., Westoby, M. J.,
and Brock, B. W.: Processes at the margins of supraglacial debris-cover:
Quantifying dirty ice ablation and debris redistribution, Earth Surf.
Proc. Land., 45, 2272–2290, https://doi.org/10.1002/esp.4879, 2020.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
GlaThiDa Consortium: Glacier Thickness Database 3.1.0, World Glacier Monitoring Service, Zurich, Switzerland [data set], https://doi.org/10.5904/wgms-glathida-2020-10, 2020.
Han, H., Wang, J., Wei, J., and Liu, S.: Backwasting rate on debris-covered
Koxkar glacier, Tuomuer mountain, China, J. Glaciol., 56, 287–296,
https://doi.org/10.3189/002214310791968430, 2010.
Herreid, S. and Pellicciotti, F.: Automated detection of ice cliffs within supraglacial debris-cover, The Cryosphere, 12, 1811–1829, https://doi.org/10.5194/tc-12-1811-2018, 2018.
Huss, M., Sugiyama, S., Bauder, A., and Funk, M.: Retreat Scenarios of
Unteraargletscher, Switzerland, Using a Combined Ice-Flow Mass-Balance
Model, Arct. Antarct. Alp. Res., 39, 422–431, 2007.
Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B.,
Pellicciotti, F., Bierkens, M. F. P., and De Jong, S. M.: High-resolution
monitoring of Himalayan glacier dynamics using unmanned aerial vehicles,
Remote Sens. Environ., 150, 93–103,
https://doi.org/10.1016/j.rse.2014.04.025, 2014.
James, M. R. and Robson, S.: Mitigating systematic error in topographic
models derived from UAV and ground-based image networks, Earth Surf.
Proc. Land., 39, 1413–1420, https://doi.org/10.1002/esp.3609, 2014a.
James, M. R. and Robson, S.: Sequential digital elevation models of active
lava flows from ground-based stereo time-lapse imagery, ISPRS J. Photogramm., 97, 160–170, https://doi.org/10.1016/j.isprsjprs.2014.08.011,
2014b.
Jouberton, A., Shaw, T. E., Miles, E., McCarthy, M., Fugger, S., Ren, S., Dehecq, A., Yang, W., and Pellicciotti, F.: Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau, P. Natl. Acad. Sci. USA, 119, e2109796119, https://doi.org/10.1073/pnas.2109796119, 2022.
Juen, M., Mayer, C., Lambrecht, A., Han, H., and Liu, S.: Impact of varying debris-cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan, The Cryosphere, 8, 377–386, https://doi.org/10.5194/tc-8-377-2014, 2014.
King, O., Turner, A. G. D., Quincey, D. J., and Carrivick, J. L.:
Morphometric evolution of Everest region debris-covered glaciers, 371,
107422, https://doi.org/10.1016/j.geomorph.2020.107422, 2020.
Kneib, M., Miles, E. S., Jola, S., Buri, P., Herreid, S., Bhattacharya, A.,
Watson, C. S., Bolch, T., Quincey, D., and Pellicciotti, F.: Mapping ice
cliffs on debris-covered glaciers using multispectral satellite images,
Remote Sens. Environ., 253, 112201, https://doi.org/10.1016/j.rse.2020.112201,
2020.
Kneib, M., Miles, E. S., Buri, P., Molnar, P., McCarthy, M., Fugger, S., and
Pellicciotti, F.: Interannual Dynamics of Ice Cliff Populations on
Debris-Covered Glaciers from Remote Sensing Observations and Stochastic
Modeling, J. Geophys. Res.-Earth, 126, e2021JF006179,
https://doi.org/10.1029/2021JF006179, 2021.
Kneib, M., Miles, E. S., Buri, P., Fugger, S., McCarthy, M., Shaw, T. E., Chuanxi, Z., Truffer, M., Westoby, M. J., Yang, W., and Pellicciotti, F.: Data and scripts for “Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry”, Zenodo [data set and code], https://doi.org/10.5281/zenodo.7044364, 2022.
Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., De Jong, S. M., and
Immerzeel, W. W.: Object-based analysis of unmanned aerial vehicle imagery
to map and characterise surface features on a debris-covered glacier, Remote
Sens. Environ., 186, 581–595, https://doi.org/10.1016/j.rse.2016.09.013,
2016.
Lague, D., Brodu, N., and Leroux, J.:
Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z),
ISPRS J. Photogram. Remote Sens.,
82,
10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009,
2013.
Mallalieu, J., Carrivick, J. L., Quincey, D. J., Smith, M. W., and James, W.
H. M.: An integrated Structure-from-Motion and time-lapse technique for
quantifying ice-margin dynamics, J. Glaciol., 63, 937–949,
https://doi.org/10.1017/jog.2017.48, 2017.
McCarthy, M., Miles, E., Kneib, M., Buri, P., Fugger, S., and Pellicciotti, F.: Supraglacial debris thickness and supply rate in High-Mountain Asia, Commun. Earth Environ., 3, 269, https://doi.org/10.1038/s43247-022-00588-2, 2022.
Messerli, A. and Grinsted, A.: Image georectification and feature tracking toolbox: ImGRAFT, Geosci. Instrum. Method. Data Syst., 4, 23–34, https://doi.org/10.5194/gi-4-23-2015, 2015.
Miles, E., McCarthy, M., Dehecq, A., Kneib, M., Fugger, S., and
Pellicciotti, F.: Health and sustainability of glaciers in High Mountain
Asia, Nat. Commun., 121, 1–10,
https://doi.org/10.1038/s41467-021-23073-4, 2021.
Miles, E. S., Pellicciotti, F., Willis, I. C., Steiner, J. F., Buri, P., and
Arnold, N. S.: Refined energy-balance modelling of a supraglacial pond,
Langtang Khola, Nepal, Ann. Glaciol., 57, 29–40, https://doi.org/10.3189/2016AoG71A421,
2016.
Miles, E. S., Steiner, J. F., and Brun, F.: Highly variable aerodynamic
roughness length (z0) for a hummocky debris-covered glacier, J. Geophys.
Res.-Atmos., 122, 8447–8466, https://doi.org/10.1002/2017JD026510, 2017a.
Miles, E. S., Willis, I. C., Arnold, N. S., Steiner, J., and Pellicciotti,
F.: Spatial, seasonal and interannual variability of supraglacial ponds in
the Langtang Valley of Nepal, 1999–2013, J. Glaciol., 63, 88–105,
https://doi.org/10.1017/jog.2016.120, 2017b.
Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., and
Pellicciotti, F.: Surface Pond Energy Absorption Across Four Himalayan
Glaciers Accounts for 1/8 of Total Catchment Ice Loss, Geophys. Res. Lett.,
45, 10464–10473, https://doi.org/10.1029/2018GL079678, 2018.
Mishra, N. B., Miles, E. S., Chaudhuri, G., Mainali, K. P., Mal, S., Singh,
P. B., and Tiruwa, B.: Quantifying heterogeneous monsoonal melt on a
debris-covered glacier in Nepal Himalaya using repeat uncrewed aerial system
(UAS) photogrammetry, J. Glaciol., 68, 288–304,
https://doi.org/10.1017/JOG.2021.96, 2021.
Mölg, N., Bolch, T., Walter, A., and Vieli, A.: Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age, The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, 2019.
Mölg, N., Ferguson, J., Bolch, T., and Vieli, A.: On the influence of
debris cover on glacier morphology: How high-relief structures evolve from
smooth surfaces, Geomorphology, 357, 107092,
https://doi.org/10.1016/j.geomorph.2020.107092, 2020.
Moore, P. L.: Stability of supraglacial debris, Earth Surf. Proc.
Land., 43, 285–297, https://doi.org/10.1002/esp.4244, 2018.
Moore, P. L.: Numerical Simulation of Supraglacial Debris Mobility:
Implications for Ablation and Landform Genesis, Front. Earth Sci., 9,
https://doi.org/10.3389/feart.2021.710131, 2021.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Nicholson, L. I., McCarthy, M., Pritchard, H. D., and Willis, I.: Supraglacial debris thickness variability: impact on ablation and relation to terrain properties, The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, 2018.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Ostrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence of
Ice Cores in Moraine Ridges, Geogr. Ann., 41, 228–230,
https://doi.org/10.1080/20014422.1959.11907953, 1959.
Pellicciotti, F., Stephan, C., Miles, E. S., Herreid, S., Immerzeel, W. W.,
and Bolch, T.: Mass-balance changes of the debris-covered glaciers in the
Langtang Himal, Nepal, from 1974 to 1999, J. Glaciol., 61, 373–386,
https://doi.org/10.3189/2015JoG13J237, 2015.
Pritchard, H. D., King, E. C., Goodger, D. J., McCarthy, M., Mayer, C., and
Kayastha, R.: Towards Bedmap Himalayas: development of an airborne
ice-sounding radar for glacier thickness surveys in High-Mountain Asia, Ann.
Glaciol., 61, 35–45, https://doi.org/10.1017/aog.2020.29, 2020.
Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered
glaciers including heat conduction through the debris layer, J. Glaciol., 56, 903–916,
https://doi.org/10.3189/002214310794457218, 2010.
Reid, T. D. and Brock, B. W.: Assessing ice-cliff backwasting and its
contribution to total ablation of debris-covered Miage glacier, Mont Blanc
massif, Italy, J. Glaciol., 60, 3–13, https://doi.org/10.3189/2014JoG13J045, 2014.
Röhl, K.: Thermo-erosional notch development at fresh-water-calving
Tasman Glacier, New Zealand, J. Glaciol., 52, 203–213,
https://doi.org/10.3189/172756506781828773, 2006.
Sakai, A., Nakawo, M., and Fujita, K.: Melt rate of ice cliffs on the Lirung
Glacier, Nepal Himalayas, 1996, B. Glacier Res., 16, 57–66, 1998.
Sakai, A., Nakawo, M., and Fujita, K.: Distribution Characteristics and
Energy Balance of Ice Cliffs on Debris-covered Glaciers, Nepal Himalaya,
Arct. Antarct. Alp. Res., 34, 12–19,
https://doi.org/10.1080/15230430.2002.12003463, 2002.
Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A.,
and Fujita, K.: Debris-covered glacier anomaly? Morphological factors
controlling changes in the mass balance, surface area, terminus position,
and snow line altitude of Himalayan glaciers, Earth Planet. Sc. Lett., 471,
19–31, https://doi.org/10.1016/j.epsl.2017.04.039, 2017.
Sato, Y., Fujita, K., Inoue, H., Sunako, S., Sakai, A., Tsushima, A.,
Podolskiy, E. A., Kayastha, R., and Kayastha, R. B.: Ice Cliff Dynamics of
Debris-Covered Trakarding Glacier in the Rolwaling Region, Nepal Himalaya,
Front. Earth Sci., 9, 398, https://doi.org/10.3389/FEART.2021.623623/BIBTEX,
2021.
Shaw, T. E., Brock, B. W., Fyffe, C. L., Pellicciotti, F., Rutter, N., and
Diotri, F.: Air temperature distribution and energy-balance modelling of a
debris-covered glacier, J. Glaciol., 62, 185–198,
https://doi.org/10.1017/jog.2016.31, 2016.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R.,
Porter, C., and Morin, P.: An automated, open-source pipeline for mass
production of digital elevation models (DEMs) from very-high-resolution
commercial stereo satellite imagery, ISPRS J. Photogramm., 116,
101–117, https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Stefaniak, A. M., Robson, B. A., Cook, S. J., Clutterbuck, B., Midgley, N.
G., and Labadz, J. C.: Mass balance and surface evolution of the
debris-covered Miage Glacier, 1990–2018, Geomorphology, 373, 107474,
https://doi.org/10.1016/j.geomorph.2020.107474, 2021.
Steiner, J. F., Pellicciotti, F., Buri, P., Miles, E. S., Immerzeel, W. W.,
and Reid, T. D.: Modelling ice-cliff backwasting on a debris-covered glacier
in the Nepalese Himalaya, J. Glaciol., 61, 889–907,
https://doi.org/10.3189/2015JoG14J194, 2015.
Steiner, J. F., Litt, M., Stigter, E. E., Shea, J., Bierkens, M. F. P., and
Immerzeel, W. W.: The Importance of Turbulent Fluxes in the Surface Energy
Balance of a Debris-Covered Glacier in the Himalayas, Front. Earth Sci., 6, ,
https://doi.org/10.3389/feart.2018.00144, 2018.
Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., and Pellicciotti, F.:
Supraglacial ice cliffs and ponds on debris-covered glaciers:
Spatio-temporal distribution and characteristics, J. Glaciol., 65, 617–632,
https://doi.org/10.1017/jog.2019.40, 2019.
Steiner, J. F., Gurung, T. R., Joshi, S. P., Koch, I., Saloranta, T., Shea,
J., Shrestha, A. B., Stigter, E., and Immerzeel, W. W.: Multi-year
observations of the high mountain water cycle in the Langtang catchment,
Central Himalaya, Hydrol. Process., 35, e14189, https://doi.org/10.1002/hyp.14189,
2021.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: Precise Global DEM Generation by ALOS PRISM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-4, 71–76, https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014.
Thompson, S., Benn, D. I., Mertes, J., and Luckman, A.: Stagnation and mass
loss on a Himalayan debris-covered glacier: processes, patterns and rates,
J. Glaciol., 62, 467–485, https://doi.org/10.1017/jog.2016.37, 2016.
Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., Brun, F., Berthier, E., and Sherpa, S. F.: Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal, The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, 2016.
Watson, C. S., Quincey, D. J., Carrivick, J. L., and Smith, M. W.: Ice cliff
dynamics in the Everest region of the Central Himalaya, Geomorphology, 278, 238–251,
https://doi.org/10.1016/j.geomorph.2016.11.017, 2017a.
Watson, C. S., Quincey, D. J., Smith, M. W., Carrivick, J. L., Rowan, A. V.,
and James, M. R.: Quantifying ice cliff evolution with multi-temporal point
clouds on the debris-covered Khumbu Glacier, Nepal, J. Glaciol., 63, 823-837,
https://doi.org/10.1017/jog.2017.47, 2017b.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and
Reynolds, J. M.: “Structure-from-Motion” photogrammetry: A low-cost,
effective tool for geoscience applications, Geomorphology, 179, 300–314,
https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L.,
Stewart, R. L., and Brock, B. W.: Geomorphological evolution of a
debris-covered glacier surface, Earth Surf. Proc. Land., 45,
3431–3448, https://doi.org/10.1002/esp.4973, 2020.
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but...