Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3601-2022
https://doi.org/10.5194/tc-16-3601-2022
Research article
 | 
08 Sep 2022
Research article |  | 08 Sep 2022

Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods

Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss

Related authors

Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022,https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Organic carbon characteristics in ice-rich permafrost in alas and Yedoma deposits, central Yakutia, Siberia
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020,https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary

Related subject area

Discipline: Frozen ground | Subject: Biogeochemistry/Biology
Review article: Terrestrial dissolved organic carbon in northern permafrost
Liam Heffernan, Dolly N. Kothawala, and Lars J. Tranvik
The Cryosphere, 18, 1443–1465, https://doi.org/10.5194/tc-18-1443-2024,https://doi.org/10.5194/tc-18-1443-2024, 2024
Short summary
Environmental controls on observed spatial variability of soil pore water geochemistry in small headwater catchments underlain with permafrost
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023,https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Responses of dissolved organic carbon to freeze–thaw cycles associated with the changes in microbial activity and soil structure
You Jin Kim, Jinhyun Kim, and Ji Young Jung
The Cryosphere, 17, 3101–3114, https://doi.org/10.5194/tc-17-3101-2023,https://doi.org/10.5194/tc-17-3101-2023, 2023
Short summary
High nitrate variability on an Alaskan permafrost hillslope dominated by alder shrubs
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022,https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Improved ELMv1-ECA simulations of zero-curtain periods and cold-season CH4 and CO2 emissions at Alaskan Arctic tundra sites
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021,https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary

Cited articles

Ashastina, K., Schirrmeister, L., Fuchs, M., and Kienast, F.: Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands, Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, 2017. 
Ashastina, K., Kuzmina, S., Rudaya, N., Troeva, E., Schoch, W. H., Römermann, C., Reinecke, J., Otte, V., Savvinov, G., Wesche, K., and Kienast, F.: Woodlands and steppes: Pleistocene vegetation in Yakutia's most continental part recorded in the Batagay permafrost sequence, Quaternary Sci. Rev., 196, 38–61, https://doi.org/10.1016/j.quascirev.2018.07.032, 2018. 
Brassell, S. C., Eglinton, G., and Maxwell, J. R.: The geochemistry of terpenoids and steroids, Portland Press Ltd., https://doi.org/10.1042/bst0110575, 1983. 
Brocks, J. J., Grosjean, E., and Logan, G. A.: Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants, Geochim. Cosmochim. Ac., 72, 871–888, https://doi.org/10.1016/j.gca.2007.11.028, 2008. 
Bröder, L., Keskitalo, K., Zolkos, S., Shakil, S., Tank, S. E., Kokelj, S. V., Tesi, T., Dongen, B. E. V., Haghipour, N., Eglinton, T. I., and Vonk, J. E.: Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies, Environ. Res. Lett., 16, 054059, https://doi.org/10.1088/1748-9326/abee4b, 2021. 
Download
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.