Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3101-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/tc-16-3101-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaporation over a glacial lake in Antarctica
Finnish Meteorological Institute, Helsinki, Finland
Miguel Potes
Institute of Earth Sciences (ICT), Institute for Advanced Studies and Research (IIFA), University of Évora, Évora, Portugal
Earth Remote Sensing Laboratory (EaRSLab), Institute for Advanced Studies and Research (IIFA), University of Évora, Évora, Portugal
Timo Vihma
Finnish Meteorological Institute, Helsinki, Finland
Tuomas Naakka
Finnish Meteorological Institute, Helsinki, Finland
Pankaj Ramji Dhote
Indian Institute of Remote Sensing, Dehradun, India
Praveen Kumar Thakur
Indian Institute of Remote Sensing, Dehradun, India
Related authors
Elena Shevnina, Timo Vihma, Miguel Potes, and Tuomas Naakka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1964, https://doi.org/10.5194/egusphere-2025-1964, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The study first estimated the summertime evaporation over lakes located in coastal Antarctica with direct (eddy-covariance) measurements collected during two austral summers (December–January) in 2017–2018 and 2019–2020. The lake evaporation was on average 1.6 mm d-1 in the ice break-up period, and it doubled in the ice free period. The bulk aerodynamic method with a site-specific transfer coefficient of moisture well reproduced the observed day-to-day variations in evaporation over lakes.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica M. L. Ekman
Atmos. Chem. Phys., 25, 8127–8145, https://doi.org/10.5194/acp-25-8127-2025, https://doi.org/10.5194/acp-25-8127-2025, 2025
Short summary
Short summary
The effects of warmer sea surface temperatures and decreasing sea ice cover on polar climates have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.
Elena Shevnina, Timo Vihma, Miguel Potes, and Tuomas Naakka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1964, https://doi.org/10.5194/egusphere-2025-1964, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The study first estimated the summertime evaporation over lakes located in coastal Antarctica with direct (eddy-covariance) measurements collected during two austral summers (December–January) in 2017–2018 and 2019–2020. The lake evaporation was on average 1.6 mm d-1 in the ice break-up period, and it doubled in the ice free period. The bulk aerodynamic method with a site-specific transfer coefficient of moisture well reproduced the observed day-to-day variations in evaporation over lakes.
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
Weather Clim. Dynam., 6, 669–694, https://doi.org/10.5194/wcd-6-669-2025, https://doi.org/10.5194/wcd-6-669-2025, 2025
Short summary
Short summary
We study the impacts of globally increasing sea surface temperatures and sea ice loss on the atmosphere in wintertime. In future climates, the jet stream shifts southward over the North Atlantic and extends further over Europe. Increasing sea surface temperatures drives these changes. The region of high activity of low-pressure systems is projected to move east towards Europe. Future increasing sea surface temperatures and sea ice loss contribute with similar magnitude to the eastward shift.
Yubing Cheng, Bin Cheng, Roberta Pirazzini, Amy R. Macfarlane, Timo Vihma, Wolfgang Dorn, Ruzica Dadic, Martin Schneebeli, Stefanie Arndt, and Annette Rinke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1164, https://doi.org/10.5194/egusphere-2025-1164, 2025
Short summary
Short summary
We study snow density from the MOSAiC expedition. Several snow density schemes were tested and compared with observation. A thermodynamic ice model was employed to assess the impact of snow density and precipitation on the thermal regime of sea ice. The parameterized mean snow densities are consistent with observations. Increased snow density reduces snow and ice temperatures, promoting ice growth, while increased precipitation leads to warmer snow and ice temperatures and reduced ice thickness.
Caroline Leck, Jost Heintzenberg, Tiina Nygård, and Tuomas Naakka
EGUsphere, https://doi.org/10.5194/egusphere-2025-695, https://doi.org/10.5194/egusphere-2025-695, 2025
Short summary
Short summary
Five summer cruises of the Swedish icebreaker Oden in the inner Arctic in 1990, 1996, 2001, 2008, and 2018 provided a unique dataset on the seasonal distribution of atmospheric aerosol. Coupling these data with the seasonal sea ice distribution strongly indicated a regional biogenic aerosol source during late summer and early autumn freeze-up conditions. Given the expected further warming of the Arctic, we hypothesize an increase in biogenic aerosol in late summer and autumn.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 19, 1031–1046, https://doi.org/10.5194/tc-19-1031-2025, https://doi.org/10.5194/tc-19-1031-2025, 2025
Short summary
Short summary
To better understand the local, regional, and global impacts of the recent rapid sea-ice decline in the Arctic, one of the key issues is to quantify the effects of sea-ice concentration on the surface radiative fluxes. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in the sensitivity of the surface radiative fluxes to sea-ice concentration.
Piyusha B. Kadam, Praveen K. Thakur, Sanjay K. Dwivedi, Vaibhav Garg, and Pankja R. Dhote
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 251–256, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-251-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-251-2024, 2024
Rachit, Abhay Masiwal, Sanyam Singla, Gaurish Singhal, Praveen K. Thakur, Vaibhav Garg, and Shakil Romshoo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 427–435, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-427-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-427-2024, 2024
Ardra Santhosh, Vaibhav Garg, and Praveen K. Thakur
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 477–486, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-477-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-477-2024, 2024
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Di Chen, Qizhen Sun, and Timo Vihma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2359, https://doi.org/10.5194/egusphere-2024-2359, 2024
Preprint archived
Short summary
Short summary
We investigates the variations and trends in Arctic sea ice during summer and autumn, focusing on the impacts of sea surface temperature (SST) and surface air temperature (SAT). Both SST and SAT significantly influence Arctic sea ice concentration. SST affects both interannual variations and decadal trends, while SAT primarily influences interannual variations. Additionally, SAT's impact on sea ice concentration leads by seven months, due to a stronger warming trend in winter than in summer.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024, https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Short summary
A prerequisite for understanding the local, regional, and hemispherical impacts of Arctic sea-ice decline on the atmosphere is to quantify the effects of sea-ice concentration (SIC) on the sensible and latent heat fluxes in the Arctic. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in SIC and in the sensitivity of the latent and sensible heat fluxes to SIC.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2436, https://doi.org/10.5194/egusphere-2023-2436, 2023
Preprint archived
Short summary
Short summary
In contrary to the current understanding, there can be a strong connection between ENSO and the South Atlantic Subtropical Dipole (SASD). It is highly probable that the robust inverse correlation between ENSO and SASD will persist in the future. The ENSO-SASD correlation exhibits substantial multi-decadal variability over the course of a century. The change in the ENSO-SASD relation can be linked to changes in ENSO regime and convective activities over the central South Pacific Ocean.
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023, https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Short summary
Previous studies have noted a significant relationship between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices, but little is known about the stability of their relationship. We found a significant positive correlation between the two indices prior to the year 2000 but an insignificant correlation afterwards.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Pankaj R. Dhote, Joshal K. Bansal, Vaibhav Garg, Praveen K. Thakur, and Ankit Agarwal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-101, https://doi.org/10.5194/nhess-2022-101, 2022
Preprint withdrawn
Short summary
Short summary
In the present paper, we have developed framework to establish virtual stage-discharge gauging network in sparsely gauged basin using hydrodynamic modelling and satellite altimetry data. The publication of the work will provide more insights to hydraulic community dealing with flood hazard in sparsely gauged basins, on how to monitor extreme river flow events using remote sensing data at ungauged locations.
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022, https://doi.org/10.5194/essd-14-1621-2022, 2022
Short summary
Short summary
A major goal of the Springtime Atmospheric Boundary Layer Experiment (STABLE) aircraft campaign was to observe atmospheric conditions during marine cold-air outbreaks (MCAOs) originating from the sea-ice-covered Arctic ocean. Quality-controlled measurements of several meteorological variables collected during 15 vertical aircraft profiles and by 22 dropsondes are presented. The comprehensive data set may be used for validating model results to improve the understanding of future trends in MCAOs.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Tiina Nygård, Michael Tjernström, and Tuomas Naakka
Weather Clim. Dynam., 2, 1263–1282, https://doi.org/10.5194/wcd-2-1263-2021, https://doi.org/10.5194/wcd-2-1263-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the Arctic atmosphere in winter are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. The results show that the influence of different large-scale flows on temperature and humidity profiles must be viewed as a progressing set of processes. Within the Arctic, there are notable regional differences in how large-scale flows affect the temperature and specific humidity profiles.
Bin Cheng, Yubing Cheng, Timo Vihma, Anna Kontu, Fei Zheng, Juha Lemmetyinen, Yubao Qiu, and Jouni Pulliainen
Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, https://doi.org/10.5194/essd-13-3967-2021, 2021
Short summary
Short summary
Climate change strongly impacts the Arctic, with clear signs of higher air temperature and more precipitation. A sustainable observation programme has been carried out in Lake Orajärvi in Sodankylä, Finland. The high-quality air–snow–ice–water temperature profiles have been measured every winter since 2009. The data can be used to investigate the lake ice surface heat balance and the role of snow in lake ice mass balance and parameterization of snow-to-ice transformation in snow/ice models.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Carlos Miranda Rodrigues, Madalena Moreira, Rita Cabral Guimarães, and Miguel Potes
Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, https://doi.org/10.5194/hess-24-5973-2020, 2020
Short summary
Short summary
In Mediterranean environments, evaporation is a key component of reservoir water budgets. Prediction of surface evaporation becomes crucial for adequate reservoir water management. This study provides an applicable method for calculating evaporation based on pan measurements applied at Alqueva Reservoir (southern Portugal), one of the largest artificial lakes in Europe. Moreover, the methodology presented here could be applied to other Mediterranean reservoirs.
Cited articles
Agustsson, H. and Olafsson, H.: Mean gust factors in complex terrain,
Meteorol. Z., 13, 149–155, 2004.
Antarctic
station catalog: Council of Managers of National Antarctic Programs (COMNAP), Christchurch, New
Zealand, 86 pp., 2017.
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020.
Asthana, R., Shrivastava, P. K., Srivastava, H. B., Swain, A. K., Beg, M. J.,
and Dharwadkar, A.: Role of lithology, weathering and precipitation on water
chemistry of lakes from Larsemann Hills and Schirmacher Oasis of East
Antarctica, Adv. Polar Sci., 30, 35–51, https://doi.org/10.13679/j.advps.2019.1.00035, 2019.
Aubinet M., Vesala, T., Papale, D. (Eds): Eddy Covariance: A Practical Guide
to Measurement and Data Analysis, ISBN 978-94-007-2350-4e-ISBN, https://doi.org/10.1007/978-94-007-2351-1, 2012.
Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes, M.:
On the contribution of lakes in predicting near-surface temperature in a
global weather forecasting model, Tellus A, 64, 15829, https://doi.org/10.3402/tellusa.v64i0.15829, 2012.
Bell, R., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., Zappa,
C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.: Antarctic ice shelf
potentially stabilized by export of meltwater in a surface river, Nature,
544, 344–348, https://doi.org/10.1038/nature22048, 2017.
Bell, R., Banwell, A., Trusel, L., and Kingslake, J.: Antarctic surface
hydrology and impacts on the ice-sheet mass balance, Nat. Clim. Change, 1044–1052,
https://doi.org/10.1038/s41558-018-0326-3, 2019.
Blanken, P. D., Rouse, W. R., Culf, A. D., Spence, C., Boudreau, L. D.,
Jasper, J. N., Kochtubajda, B., Schertzer. W.M., Marsh, P., and Verseghy, D.:
Eddy covariance measurements of evaporation from great slave Lake, northwest
territories, Canada, Water Resour. Res., 36, 1069–1077,
https://doi.org/10.1029/1999WR900338, 2000.
Boisvert, L., Vihma, T., and Shie, C. L.: Evaporation from the Southern Ocean
estimated on the basis of AIRS satellite data, J. Geophys.
Res.-Atmos., 125, e2019JD030845,
https://doi.org/10.1029/2019JD030845, 2020.
Borghini, F., Colacevich, A., Loiselle, S. A., and Bargagi, R.: Short-term
dynamics of physico-chemical and biological features in a shallow,
evaporative antarctic lake, Polar Biol., 36, 1147–1160,
https://doi.org/10.1007/s00300-013-1336-2, 2013.
Bormann, P. and Fritzsche, D.: The Schirmacher Oasis, Queen Maud Land, East
Antarctica, and Its Surroundings, Justus Perthes Verlag Gotha, Darmstadt,
448 pp., 1995.
Boronina, A. S., Popov, S. V., and Pryakhina, G. V.: Hydrological characteristics
of lakes in the eastern part of the Broknes Peninsula, Larsemann Hills, East
Antarctica, Led i Sneg, 59, 39–48, https://doi.org/10.15356/2076-6734-2019-1-39-48, 2019 (in Russian).
Braun, M., Saurer, H., Vogt, S., Simões, J. C., and Goßmann, H.:
The influence of large-scale atmospheric circulation on the surface energy
balance of the King George Island ice cap, Int. J. Climatol., 21, 21–36,
https://doi.org/10.1002/joc.563, 2001.
Brunke, M. A., Fairall, C. W., Zeng, X., Eymard, L., and Curry, J. A.: Which
bulkaerodynamic algorithms are least problematic in computing ocean surface
turbulent fluxes?, J. Climate, 16, 619–635,
https://doi.org/10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2, 2003.
Brutsaert, W.: Evaporation into the atmosphere – theory, history and
applications, D Reidel Publishing Company, Dordrecht, Holland, 299 pp.,
1982.
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural,
and Regulatory Applications: A Field Book on Measuring Ecosystem Gas
Exchange and Areal Emission Rates, LI-COR Biosciences, Lincoln, NE, USA, 331
pp., 2013.
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-Profile
Relationships in the Atmospheric Surface Layer, J. Atmos.
Sci., 28, 181–189,
https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971.
Chebotarev, A. I.: Hydrology, Hydrometizdat, Leningrad, 544 pp., 1975 (in
Russian).
Dhote, P. R., Thakur, P. K., Shevnina, E., Kaushik, S., Verma, A., Ray, Y., and Aggarwal, S. P.:
Meteorological parameters and water balance components of Priyadarshini Lake at the
Schirmacher Oasis, East Antarctica, Polar Sci., 30, 100763, https://doi.org/10.1016/J.POLAR.2021.100763, 2021.
Doorenbos, J. and Pruitt, W. O.: Crop water requirements, FAO Irrigation and
Drainage Paper No. 24 FAO Rome, 179 pp., 1975.
Dragoni, D., Schmid, H. P., Grimmond, C. S. B., Loescher, H. W.: Uncertainty of
annual net ecosystem productivity estimated using eddy covariance flux
measurements, J. Geophys. Res.-Atmos., 112, D17102, https://doi.org/10.1029/2006JD008149, 2007.
Ellehoj, M. D., Steen-Larsen, H. C., Johnsen, S. J., and Madsen, M. B.: Ice-vapor
equilibrium fractionation factor of hydrogen and oxygen isotopes:
Experimental investigations and implications for stable water isotope
studies, Rapid Commun. Mass Spectrom., 27, 2149–2158, 2013.
Eugster, W., McFadden, J. P., and Chapin, E. S.: A comparative approach to
regional variation in surface fluxes using mobile eddy correlation towers,
Bound.-Lay. Meteorol., 85, 293–307, 1997.
Faucher, B., Lacelle, D., Fisher, D., Andersen, D., and McKay, C.: Energy and
water mass balance of Lake Untersee and its perennial ice cover, East
Antarctica, Antarct. Sci., 31, 271–285,
https://doi.org/10.1017/S0954102019000270, 2019.
Favier, V., Agosta, C., Genthon, C., Arnaud, L., Trouvillez, A., and Gallée,
H.: Modeling the mass and surface heat budgets in a coastal blue ice area of
Adelie Land, Antarctica, J. Geophys. Res., 116, F03017,
https://doi.org/10.1029/2010JF001939, 2011.
Finch, J. W. and Calver, A.: Methods for the quantification of evaporation from
lakes, Prepared for the World Meteorological Organization's Commission for
Hydrology, Oxfordshire, UK, 41 pp., 2008.
Finch, J. W. and Hall, R. L.: Estimation of Open Water Evaporation: A Review of
Methods, R&D Technical Report W6-043/TR, Environment Agency, Bristol, 155
pp., 2001.
Finch, J. W. and Hall, R. L.: Evaporation from Lakes. Encyclopedia of
Hydrological Sciences, Part 4 Hydrometeorology Centre for Ecology and
Hydrology, Wallingford, 635–646, 2005.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux
measurements, J. Geophys. Res., 106, 3503–3509, 2001.
Foken, T.: 50 Years of the Monin–Obukhov Similarity Theory, Bound.-Lay.
Meteorol., 119, 431–447, https://doi.org/10.1007/s10546-006-9048-6, 2006.
Golubev, G. N.: Hydrology of glaciers. Gidrometeoizdat, Leningrad, 128 pp.,
1976 (in Russian).
Gopinath, G., Resmi, T. R., Praveenbabu, M., Pragatha, M., Sunil, P. S.,
and Rawat, R.: Isotope hydrochemistry of the lakes in Schirmacher Oasis, East
Antarctica, Ind. J. Geo Marine Sci., 49, 947–953, 2020.
Guest, P. S.: Inside katabatic winds over the Terra Nova Bay polynya: 2.
Dynamic and thermodynamic analyses, J. Geophys. Res.-Atmos., 126, e2021JD034904, https://doi.org/10.1029/2021JD034904, 2021.
Heikinheimo, M., Kangas, M., Tourula, T., Venäläinen, A., and Tattari,
S.: Momentum and heat fluxes over lakes Tämnaren and Råksjö
determined by the bulk-aerodynamic and eddy-correlation methods,
Agric. Forest Meteorol., 98–99, 521–534,
https://doi.org/10.1016/S0168-1923(99)00121-5, 1999.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan. X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hodgson, D. A.: Antarctic lakes, in: Encyclopedia of Lakes and Reservoirs.
Encyclopedia of Earth Sciences Series, Springer, Dordrecht,
https://doi.org/10.1007/978-1-4020-4410-6, 2012.
Hoeltgebaum, L. E. B., Diniz, A. L., and Dias, N. L. C.: Intercomparação
de sensores de temperatura e umidade relativa para uso em campanha
micrometeorológica, Ci. e Nat., Santa Maria v.42, Special Edition:
Micrometeorologia, e18, https://doi.org/10.5902/2179460X46565, 2020 (in Portuguese).
Hojjati, E., Mahtabi, G., Taran, F., and Kisi, O.: Estimating evaporation from
reservoirs using energy budget and empirical methods: Alavian dam reservoir,
NW Iran, Italian J. Agrometeorol., 2, 19–34, https://doi.org/10.13128/ijam-1033, 2020.
Holtslag, A. A. M. and De Bruin, H. A. R.: Applied Modeling of the Nighttime
Surface Energy Balance over Land, J. Appl. Meteorol.
Climatol., 27, 689–704, 1988.
How, P., Messerli, A., Mätzler, E., Santoro, M., Wiesmann, A., Caduff, R.,
Lagley, K., Bojesen, M., Paul, F., Kääb, A., and Carrivick J.: Greenland-wide
inventory of ice marginal lakes using a multi-method approach, Sci. Rep.-UK, 11,
4481, https://doi.org/10.1038/s41598-021-83509-1, 2021.
Ingole, B. S. and Parulekar, A. H.: Limnoligy of Priyadarshini Lake, Schirmacher
oasis, Antarctica, Polar Rec., 26, 13–17, 1990.
Kaup, E.: Development of anthropogenic eutrophication in Antarctic lakes of
the Schirmacher Oasis, Verhandlungen Internationale Vereinigung der
Limnologie, 29, 678–682, 2005.
Kaup, E. and Haendel, D.: Snow and ice cover of water bodies, in: The Schirmacher Oasis, Queen Maud Land, East
Antarctica,, edited by: Bormann, P.
and Fritsche, D., Gotha, Justus Perthes Verlag, 279–285, 1995.
Khare, N., Chaturvedi, S. K., Saraswat, R., Srivastava, R., Raina, R.,
and Wanganeo, A.: Some morphometric characteristics of Priyadarshini water body
at Schirmacher Oasis, Central Dronning Maud Land, Antarctica with special
reference to its bathymetry, Ind. J. Marine Sci., 37,
435–438, 2008.
Kljun, N., Calanca, P., Rotach, M. W., Schmid, H. P.: A Simple Parameterisation
for Flux Footprint Predictions, Bound.-Lay. Meteorol., 112, 503–523,
https://doi.org/10.1023/B:BOUN.0000030653.71031.96, 2004.
Klokov, V. D.: Surface melting and liquid water runoff from the Antarctic
ice-sheet, Leningrad, Gidrometeoizdat, 126 pp., 1979 (in Russian).
Konovalov, G. V.: Geomorphological description of the Schirmacher oasis and
surrounds, B. Sov. Antarct. Exp., 37, 8–13, 1962
(in Russian).
Konstantinov, A. R.: Evaporation Under Natural Conditions, Israel Program
for Scientific Translation, Jerusalem, 523 pp., 1968.
Kourzeneva, E.: External data for lake parameterization in numerical Weather
Prediction and climate modeling, Boreal Env. Res., 15, 165–177, 2010.
Krass, M. S.: Thermophysics of lakes in Antarctic oases, Reports of the
Russian Academy of Science to Antarctic committee, 25, 99–125, 1986
(in Russian).
Launiainen, J. and Vihma, T.: Derivation of turbulent surface fluxes – An
iterative flux-profile method allowing arbitrary observing heights,
Environ. Softw., 5, 113–114,
https://doi.org/10.1016/0266-9838(90)90021-W, 1990.
Leeson, A. A., Shepherd, A., Briggs, K., Howat, I., Fettweis, X., Morlighem,
M., and Rignot, E.: Supraglacial lakes on the Greenland ice sheet advance inland
under warming climate, Nat. Clim. Change, 5, 51–55, 2015.
Lehnherr, I., St. Louis, V. L., Sharp, M., Gardner, A. S., Smol, J. P., Schiff,
L. S., Muir, D. G. G., Mortimer, C. A., Michelutti, N., Tarnocai, C., Pierre, K.,
Emmerton, C., Wiklund, J. A., Köck, G., Lamoureux, S. F., and Talbot, C. H.:
The world's largest High Arctic lake responds rapidly to climate warming,
Nat. Commun., 9, 1290, https://doi.org/10.1038/s41467-018-03685-z,
2018.
Levy, J. S., Fountain, A. G., Obryk, M. K., Telling, J., Glennie, C.,
Pettersson, R., Gooseff, M., and Van Horn, D. J.: Decadal topographic change in
the McMurdo Dry Valleys of Antarctica: Thermokarst subsidence, glacier
thinning, and transfer of water storage from the cryosphere to the
hydrosphere, Geomorphology, 323, 80–97,
https://doi.org/10.1016/j.geomorph.2018.09.012, 2018.
Loopman, A., Kaup, E., Klokov, V., Simonov, I., and Haendel, D.: The bathymetry
of some lakes of the Antarctic oases Schirmacher and Untersee, in:
Limnological Studies in Queen Maud Land (East Antarctic), edited by: Martin, J., Valgus, Tallinn, 6–14, 1988.
Lu, P., Leppäranta, M., Cheng, B., Li, Z., Istomina, L., and Heygster, G.: The color of melt ponds on Arctic sea ice, The Cryosphere, 12, 1331–1345, https://doi.org/10.5194/tc-12-1331-2018, 2018.
Matsuoka, K., Skoglund, A., and Roth, G.: Quantarctica,
Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2018.8516e961, 2018.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas,
G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and Schuur,
E. A. G.: Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría,
A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 203–320,
https://doi.org/10.1017/9781009157964.005, 2019.
Mironov, D., Golosov, S., Heise, E., Kourzeneva, E., Ritter, B., Scheider,
N., and Terzhevik, A.: FLake – a lake model for environmental applications, in:
Proceedings of the 9th Workshop on Physical Processes in Natural Waters,
edited by: Folkard, A. and Jones, I., Lancaster University, Lancaster, 73 pp.,
2005.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface
layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151,
187 pp., 1954.
Monteith, J.: Evaporation and the environment, in: 19th Symposium of the
Society of Experimental Biology, Cambridge University Press, Cambridge, UK,
205–234, 1965.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R.
D., and Veith, T. L.: Model evaluation guidelines for systematic quantification
of accuracy in watershed simulations, T. ASABE, 50,
885–900, https://doi.org/10.13031/2013.23153, 2007.
Mustonen S. (Ed.): Sovellettu hydrologia. Vesiyhdistys, Helsinki,
291–323, 1986 (in Finnish).
Naakka, T., Nygård, T., and Vihma, T.: Air moisture climatology and related
physical processes in the Antarctic on the basis of ERA-5 reanalysis, J. Climate,
34, 4463–4480, https://doi.org/10.1175/JCLI-D-20-0798.1, 2021.
Obukhov, A. M.: Turbulence in an Atmosphere with a Non-Uniform Temperature,
Bound.-Lay. Meteorol., 2, 7–29, https://doi.org/10.1007/BF00718085,
1946.
Odrova, T.: Hydrophysic of water reservoirs, Leningrad, Gidrometizdat, 312
pp., 1979 (in Russian).
Penman, H. L.: Natural evaporation from open water, bare soil and grass,
P. Roy. Soc. Lond. A, 194, 120–145,
https://doi.org/10.1098/rspa.1948.0037, 1948.
Phartiyal, B., Sharma, A., and Bera, S. K.: Glacial lakes and geomorphological
evolution of Schirmacher Oasis, East Antarctica during Quaternary,
Quaternary Int., 23, 128–136, https://doi.org/10.1016/j.quaint.2010.11.025,
2011.
Picard, G., Fily, M., and Gallee, H.: Surface melting derived from microwave
radiometers: A climatic indicator in Antarctica, Ann. Glaciol., 46,
29–34, https://doi.org/10.3189/172756407782871684, 2007.
Popov, E. G.: Hydrological forecasts, Leningrad, Gidrometeoizdat, 257 pp.,
1979 (in Russian).
Potes, M., Salgado, R., Costa, M. J., Morais, M., Bortoli, D., Kostadinov,
I., and Mammarella, I.: Lake–atmosphere interactions at Alqueva reservoir: a
case study in the summer of 2014, Tellus A, 69, 1272787, https://doi.org/10.1080/16000870.2016.1272787, 2017.
Ramesh, K. J. and Soni, V. K.: Perspectives of Antarctic weather monitoring and
research efforts, Pol. Sci., 18, 183–188,
https://doi.org/10.1016/j.Polar.2018.04.005, 2018.
Richter, W. and Borman, P.: Geomorphology of the Schirmacher oasis, in:
Bormann, P. and Fritsche, D., The Schirmacher Oasis, Queen Maud Land, East
Antarctica, Justus Perthes Verlag, Gotha, 171–206, 1995.
Rodrigues, C. M., Moreira, M., Guimarães, R. C., and Potes, M.: Reservoir evaporation in a Mediterranean climate: comparing direct methods in Alqueva Reservoir, Portugal, Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, 2020.
Sahlée, E., Rutgersson, A., Podgrajsek, E., and Bergström, H.: Influence
from surrounding land on the turbulence measurements above a Lake,
Bound.-Lay. Meteorol., 150, 235–258, https://doi.org/10.1007/s10546-013-9868-0, 2014.
Salesky, S., Chamecki, M., and Dias, N.: Estimating the random error in eddy
covariance based fluxes and other turbulence statistics: the filtering
method, Bound.-Lay. Meteorol., 144, 113–135, 2012.
Salgado, R. and Le Moigne, P.: Coupling of the FLake model to the Surfex
externalized surface model, Boreal Environ. Res., 15, 231–244,
2010.
Shevnina, E.: 3D wind speed and CO2/H2O concentration measurements collected during austral summer 2017/2018 over an ice free surface of a shallow lake located in the Schirmacher oasis, East Antarctica, Zenodo [data set], https://doi.org/10.5281/zenodo.3469570, 2019a.
Shevnina, E.: Water temperature measurements collected during austral summer 2017/2018 on lakes located in the Schirmacher oasis, East Antarctica, Zenodo [data set], https://doi.org/10.5281/zenodo.3467126, 2019b.
Shevnina, E. and Kourzeneva, E.: Thermal regime and components of water balance
of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills,
Tellus A, 69, 1317202,
https://doi.org/10.1080/16000870.2017.1317202, 2017.
Shevnina, E., Kourzeneva, E., Dvornikov, Y., and Fedorova, I.: Retention time of lakes in the Larsemann Hills oasis, East Antarctica, The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, 2021.
Shuttleworth, W. J.: Evaporation, in: Handbook of
Hydrology, edited by: Maidment, D. R., McGraw-Hill, New York, 4.1–4.53, 1993.
Simonov, I. M.: Oases of East Antarctica, Gidrometeoizdat, 176 pp.,
1971 (in Russian).
Simonov, I. M. and Fedotov, V. I.: Ozera oasisa Schimachera [Lakes of the
Schirmacher oasis], Informazioni bulletin Sovetskoy Antarcticheskoy
Expedicii, 47, 19–23, 1964 (In Rissian).
Sinha, R. and Chatterjee, A.: Thermal structure, sedimentology, and
hydro-geochemsitry of Lake Priyadarshini, Schirmacher oasis, Antarctica,
Sixteenth Indian Expedition to Antarctica, Scientific Report, Department of
Ocean Development, Technical Publication No. 14, 36 pp., 2000.
Sokratova, I. N.: Hydrological investigations in the Antarctic oases, Russ.
Meteorol. Hydrol., 36, 207, https://doi.org/10.3103/S1068373911030083, 2011 (in
Russian).
Srivastava, A. K., Ingle, P. S., Lunge, H. S., and Khare, N.: Grain-size
characteristics of deposits derived from different glacigenic environments
of the Schirmacher Oasis, East Antarctica, Geologos, 18, 251–266, https://doi.org/10.2478/v10118-012-0014-0, 2012.
Stannard, D. I. and Rosenberry, D. O.: A comparison of short-term measurements
of lake evaporation using eddy correlation and energy budget methods,
J. Hydrol., 122, 15–22,
https://doi.org/10.1016/0022-1694(91)90168-H, 1991.
Stokes, C. R., Sanderson, J. E., Miles, B. W. J., Jamieson, S. S. R., and Leeson,
A. A.: Widespread distribution of supraglacial lakes around the margin of the
East Antarctic Ice Sheet, Sci. Rep.-UK, 9, 13823, https://doi.org/10.1038/s41598-019-50343-5, 2019.
Stull, R.: Practical Meteorology: An Algebra-based Survey of Atmospheric
Science – version 1.02b, Univ. of British Columbia, 940 pp., 2017.
Tanny, J., Cohen, S., Assouline, S., Lange, F., Grava, A., Berger, D.,
Teltch, B., and Parlange, M. B.: Evaporation from a small water reservoir: Direct
measurements and estimates, J. Hydrol., 351, 218–229, 2008.
Tomasi, C., Cacciari, A.,Vitale, V., Lupi, A.,Lanconelli, C., Pellegrini, A.,
and Grigioni, P.: Mean vertical profiles of temperature and absolute humidity
from a 12-year radiosounding data set at Terra Nova Bay (Antarctica),
Atmos. Res., 71, 139–169, https://doi.org/10.1016/j.atmosres.2004.03.009, 2004.
Toptunova, O., Choulga, M., and Kurzeneva, E.: Status and progress in global lake database developments, Adv. Sci. Res., 16, 57–61, https://doi.org/10.5194/asr-16-57-2019, 2019.
Turner, J. and Pendlebury, S. F.: The International Antarctic Weather
Forecasting Handbook, British Antarctic Survey, 663 pp., 2004.
Valkonen, T., Vihma, T., Kirkwood, S., and Johansson, M. M.: Fine-scale model
simulation of gravity waves generated by Basen nunatak in Antarctica,
Tellus, 62A, 319–332, 2010.
Venäläinen, A., Heikinheimo, M., and Tourula, T.: Latent heat flux from
small sheltered lakes, Bound.-Lay. Meteorol., 86, 355–377, https://doi.org/10.1023/A:1000664615657, 1998.
Verleyen, E., Hodgson, D. A., Vyverman, W., Roberts, D., McMinn, A.,
Vanhoutte, K., and Saabe, K.: Modelling diatom responses to climate induced
fluctuations in the moisture balance in continental Antarctic lakes, J. Paleolimnol., 30, 195–215,
https://doi.org/10.1023/A:1025570904093, 2003.
Verleyen, E., Hodgson, D., Gibson, J., Imura, S., Kaup, E., Kudoh, S.,
Wever, D. A., Hoshino, T., McMinn, A., Obbels, D., Roberts, D., Roberts, S.,
Saabe, K., Souffreau C., Tavernier I., van Niewenhuyze, W., van Ranst E.,
Vindevogel, N., and Vyverman, W.: Chemical limnology in coastal East Antarctic
lakes: Monitoring future climate change in centers of endemism and
biodiversity, Antarct. Sci., 24, 23–33,
https://doi.org/10.1017/S0954102011000642, 2012.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower
and aircraft data, J. Atmos. Ocean. Tech., 14,
512–526,
https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2,
1997.
Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C., and Berne, A.:
Present and future of rainfall in Antarctica, Geophys. Res. Lett.,
48, e2020GL092281, https://doi.org/10.1029/2020GL092281, 2021.
Vihma, T., Uotila, J., Cheng, B., and Launiainen, J.: Surface heat budget over
the Weddell Sea: buoy results and comparisons with large-scale models, J.
Geophys. Res., 107, 3013, https://doi.org/10.1029/2000JC000372, 2002.
Vihma, T., Tuovinen, E., and Savijärvi, H.: Interaction of katabatic winds
and near-surface temperatures in the Antarctic, J. Geophys. Res., 116,
D21119, https://doi.org/10.1029/2010JD014917, 2011.
Viterbo, P.: A review of parametrization schemes for land surface processes.
ECMWF, Reading, England, https://www.ecmwf.int/sites/default/files/elibrary/2002/16960-review-parametrization-schemes-land-surface-processes.pdf
(last access: 25 May 2021), 2002.
Williamson, C. E., Saros, J. E., Vincent, W. F., and Smol, J. P.: Lakes and
reservoirs as sentinels, integrators, and regulators of climate change,
Limnol. Oceanogr., 54, 2273–2282, 2009.
Xu, M., Yu, L., Liang, K., Vihma, T., Bozkurt, D., Hu, X., and Yang, Q.:
Dominant role of vertical air flows in the unprecedented warming on the
Antarctic Peninsula in February 2020, Commun. Earth Environ.,
2, 133, https://doi.org/10.1038/s43247-021-00203-w, 2021.
Zhao, L., Xia, J., Xu, Wang, Z., Sobkowiak, L., and Long, C.: Evapotranspiration
estimation methods in hydrological models, J. Geogr. Sci., 23, 359–369,
https://doi.org/10.1007/s11442-013-1015-9, 2013.
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
The evaporation over an ice-free glacial lake was measured in January 2018, and the...