Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse
Department of Earth System Science, University of California, Irvine, USA
Charles S. Zender
Department of Earth System Science, University of California, Irvine, USA
Department of Computer Science, University of California, Irvine, USA
Melchior van Wessem
Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands
Sebastián Marinsek
Department of Glaciology, Instituto Antártico Argentino, Buenos Aires, Argentina
Related authors
No articles found.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and
England, M. H.: Evolution of the Southern Annular Mode during the past
millennium, Nat. Clim. Change, 4, 564–569, https://doi.org/10.1038/nclimate2235,
2014.
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S.,
and Ligtenberg, S. R. M.: Variable Basal Melt Rates of Antarctic Peninsula
Ice Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095,
https://doi.org/10.1002/2017GL076652, 2018.
Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G., and MacFerrin, M.:
Quantifying vulnerability of Antarctic ice shelves to hydrofracture using
microwave scattering properties, Remote Sens. Environ., 210, 297–306,
https://doi.org/10.1016/j.rse.2018.03.025, 2018.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen
B Ice Shelf triggered by chain reaction drainage of supraglacial lakes,
Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Banwell, A. F., Caballero, M., Arnold, N. S., Glasser, N. F., Cathles, L. M., and MacAyeal, D. R.: Supraglacial lakes on the Larsen B ice shelf,
Antarctica, and at Paakitsoq, West Greenland: A comparative study, Ann.
Glaciol., 55, 1–8, https://doi.org/10.3189/2014AoG66A049, 2014.
Banwell, A. F., Willis, I. C., MacDonald, G. J., Goodsell, B., Mayer, D. P.,
Powell, A., and MacAyeal, D. R.: Calving and rifting on the McMurdo Ice
Shelf, Antarctica, Ann. Glaciol., 58, 78–87, https://doi.org/10.1017/aog.2017.12,
2017.
Banwell, A. F., Willis, I. C., Macdonald, G. J., Goodsell, B., and MacAyeal,
D. R.: Direct measurements of ice-shelf flexure caused by surface meltwater
ponding and drainage, Nat. Commun., 10, 730, https://doi.org/10.1038/s41467-019-08522-5,
2019.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic
surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change,
8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Bevan, S. L., Luckman, A., Hubbard, B., Kulessa, B., Ashmore, D., Kuipers Munneke, P., O'Leary, M., Booth, A., Sevestre, H., and McGrath, D.: Centuries of intense surface melt on Larsen C Ice Shelf, The Cryosphere, 11, 2743–2753, https://doi.org/10.5194/tc-11-2743-2017, 2017.
Borstad, C., Khazendar, A., Scheuchl, B., Morlighem, M., Larour, E., and
Rignot, E.: A constitutive framework for predicting weakening and reduced
buttressing of ice shelves based on observations of the progressive
deterioration of the remnant Larsen B Ice Shelf, Geophys. Res. Lett., 43,
2027–2035, https://doi.org/10.1002/2015GL067365, 2016.
Bozkurt, D., Rondanelli, R., Marín, J. C., and Garreaud, R.: Foehn Event
Triggered by an Atmospheric River Underlies Record-Setting Temperature Along
Continental Antarctica, J. Geophys. Res.-Atmos., 123, 3871–3892, https://doi.org/10.1002/2017JD027796,
2018.
Bozkurt, D., Bromwich, D. H., Carrasco, J., Hines, K. M., Maureira, J. C.,
and Rondanelli, R.: Recent Near-surface Temperature Trends in the Antarctic
Peninsula from Observed, Reanalysis and Regional Climate Model Data, Adv.
Atmos. Sci., 37, 477–493, https://doi.org/10.1007/s00376-020-9183-x, 2020.
Bozkurt, D., Bromwich, D. H., Carrasco, J., and Rondanelli, R.: Temperature
and precipitation projections for the Antarctic Peninsula over the next two
decades: contrasting global and regional climate model simulations, Clim.
Dynam., 56, 3853–3874, https://doi.org/10.1007/s00382-021-05667-2, 2021.
Braun, M. and Humbert, A.: Recent retreat of wilkins ice shelf reveals new
insights in ice shelf breakup mechanisms, IEEE Geosci. Remote Sens. Lett.,
6, 263–267, https://doi.org/10.1109/LGRS.2008.2011925, 2009.
Bromwich, D. H. and Kurtz, D. D.: Katabatic wind forcing of the Terra Nova
Bay polynya., J. Geophys. Res., 89, 3561–3572,
https://doi.org/10.1029/JC089iC03p03561, 1984.
Burton, J. C., Cathles, L. M., and Wilder, W. G.: The role of cooperative
iceberg capsize in ice-shelf disintegration, Ann. Glaciol., 54, 84–90,
https://doi.org/10.3189/2013AoG63A436, 2013.
Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and Domack,
E.: Foehn winds link climate-driven warming to ice shelf evolution in
Antarctica, J. Geophys. Res., 120, 11037–11057, https://doi.org/10.1002/2015JD023465, 2015.
Carrasco, J. F., Bozkurt, D., and Cordero, R. R.: A review of the observed
air temperature in the Antarctic Peninsula. Did the warming trend come back
after the early 21st hiatus?, Polar Sci., 28, 100653
https://doi.org/10.1016/j.polar.2021.100653, 2021.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S.,
Lenaerts, J. T. M., and Wever, N.: The Effect of Foehn-Induced Surface Melt
on Firn Evolution Over the Northeast Antarctic Peninsula, Geophys. Res.
Lett., 46, 3822–3831, https://doi.org/10.1029/2018GL080845, 2019.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., Van Den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P., and Young, N. W.:
Breakup and conditions for stability of the northern Larsen Ice Shelf,
Antarctica, Nature, 391, 778–780, 1988.
ECMWF: IFS Documentation CY33R1 – Part IV: Physical Processes, in: IFS Documentation CY33R1, vol. 4., https://www.ecmwf.int/en/elibrary/9227-part-iv-physical-processes/ (last access: 6 April 2022), 2009.
ECMWF: What are the changes from ERA-Interim to ERA5?, https://confluence.ecmwf.int//pages/viewpage.action?pageId=74764925 (last access: 6 March 2020), 2018.
ECMWF: ECMWF Reanalysis v5 (ERA5), ECMWF [data set], https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, last access: 8 April 2022.
Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A., Lachlan-Cope, T. A.,
Weeks, M., and Gray, S. L.: Foehn jets over the Larsen C Ice Shelf,
Antarctica, Q. J. Roy. Meteor. Soc., 141, 698–713,
https://doi.org/10.1002/qj.2382, 2015.
Elvidge, A. D., Kuipers Munneke, P., King, J. C., Renfrew, I. A., and
Gilbert, E.: Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface
Energy Budget Regimes and the Impact of Foehn, J. Geophys. Res.-Atmos.,
125, e2020JD032463, https://doi.org/10.1029/2020JD032463, 2020.
Glasser, N. F. and Scambos, T. A.: A structural glaciological analysis of
the 2002 Larsen B ice-shelf collapse, J. Glaciol., 54, 3–16,
https://doi.org/10.3189/002214308784409017, 2008.
Glasser, N. F., Kulessa, B., Luckman, A., Jansen, D., King, E. C., Sammonds,
P. R., Scambos, T. A., and Jezek, K. C.: Surface structure and stability of
the Larsen C ice shelf, J. Glaciol., 55, 400–410, 2009.
Grosvenor, D. P., King, J. C., Choularton, T. W., and Lachlan-Cope, T.: Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves, Atmos. Chem. Phys., 14, 9481–9509, https://doi.org/10.5194/acp-14-9481-2014, 2014.
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013.
Holland, P. R., Corr, H. F. J., Pritchard, H. D., Vaughan, D. G., Arthern, R. J.,
Jenkins, A., and Tedesco, M.: The air content of Larsen Ice Shelf, Geophys.
Res. Lett., 38, L10503, https://doi.org/10.1029/2011GL047245, 2011.
Hubbard, B., Luckman, A., Ashmore, D. W., Bevan, S., Kulessa, B., Kuipers
Munneke, P., Philippe, M., Jansen, D., Booth, A., Sevestre, H., Tison, J.
L., O'Leary, M., and Rutt, I.: Massive subsurface ice formed by refreezing of
ice-shelf melt ponds, Nat. Commun., 7, 11897, https://doi.org/10.1038/ncomms11897, 2016.
King, J. C., Gadian, A., Kirchgaessner, A., Kuipers Munneke, P.,
Lachlan-Cope, T. A., Orr, A., Reijmer, C., van den Broeke, M. R., van
Wessem, J. M., and Weeks, M.: Validation of the summertime surface energy
budget of Larsen C Ice Shelf (Antarctica) as represented in three
high-resolution atmospheric models, J. Geophys. Res., 120, 1335–1347,
https://doi.org/10.1002/2014JD022604, 2015.
King, J. C., Kirchgaessner, A., Bevan, S., Elvidge, A. D., Kuipers Munneke,
P., Luckman, A., Orr, A., Renfrew, I. A., and van den Broeke, M. R.: The
Impact of Föhn Winds on Surface Energy Balance During the 2010–2011
Melt Season Over Larsen C Ice Shelf, Antarctica, J. Geophys. Res.-Atmos., 122, 12062–12076,
https://doi.org/10.1002/2017JD026809, 2017.
Kirchgaessner, A., King, J. C., and Anderson, P. S.: The Impact of Föhn
Conditions Across the Antarctic Peninsula on Local Meteorology Based on AWS
Measurements, J. Geophys. Res.-Atmos., 126, e2020JD033748, https://doi.org/10.1029/2020JD033748,
2021.
Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012, 2012.
Kuipers Munneke, P., Ligtenberg, S. R. M., Van Den Broeke, M. R., and Vaughan, D.
G.: Firn air depletion as a precursor of Antarctic ice-shelf collapse, J.
Glaciol., 60, 205–214, https://doi.org/10.3189/2014JoG13J183, 2014.
Kuipers Munneke, P., Luckman, A. J., Bevan, S. L., Smeets, C. J. P. P.,
Gilbert, E., van den Broeke, M. R., Wang, W., Zender, C., Hubbard, B.,
Ashmore, D., Orr, A., King, J. C., and Kulessa, B.: Intense Winter Surface
Melt on an Antarctic Ice Shelf, Geophys. Res. Lett., 45, 7615–7623,
https://doi.org/10.1029/2018GL077899, 2018.
Laffin, M. K., Zender, C. S., Singh, S., Van Wessem, J. M., Smeets, C. J. P.
P., and Reijmer, C. H.: Climatology and Evolution of the Antarctic Peninsula
Föhn Wind-Induced Melt Regime From 1979–2018, J. Geophys. Res.-Atmos.,
126, e2020JD033682, https://doi.org/10.1029/2020JD033682, 2021 (data available at: https://scikit-learn.org/stable/, last access: 8 April 2022).
Larour, E., Rignot, E., Poinelli, M., and Scheuchl, B.: Physical processes
controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the
calving of iceberg A68, P. Natl. Acad. Sci. USA, 118, e2105080118,
https://doi.org/10.1073/pnas.2105080118, 2021.
Leeson, A. A., Van Wessem, J. M., Ligtenberg, S. R. M., Shepherd, A., Van
Den Broeke, M. R., Killick, R., Skvarca, P., Marinsek, S., and Colwell, S.:
Regional climate of the Larsen B embayment 1980–2014, J. Glaciol., 63,
683–690, https://doi.org/10.1017/jog.2017.39, 2017.
Leeson, A. A., Forster, E., Rice, A., Gourmelen, N., and van Wessem, J. M.:
Evolution of Supraglacial Lakes on the Larsen B Ice Shelf in the Decades
Before it Collapsed, Geophys. Res. Lett., 47, e2019GL085591, https://doi.org/10.1029/2019GL085591,
2020.
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger,
S., Helm, V., Smeets, C. J. P. P., Broeke, M. R. V. Den, Van De Berg, W. J.,
Van Meijgaard, E., Eijkelboom, M., Eisen, O., and Pattyn, F.: Meltwater
produced by wind-albedo interaction stored in an East Antarctic ice shelf,
Nat. Clim. Change, 7, 58–62, https://doi.org/10.1038/nclimate3180, 2017.
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J.,
Berthier, E., and Nagler, T.: Damage accelerates ice shelf instability and
mass loss in Amundsen Sea Embayment, Sci. Libr. Ser., 117, 24735–24741,
https://doi.org/10.1073/pnas.1912890117, 2020.
Lim, E. P., Hendon, H. H., Arblaster, J. M., Delage, F., Nguyen, H., Min, S.
K., and Wheeler, M. C.: The impact of the Southern Annular Mode on future
changes in Southern Hemisphere rainfall, Geophys. Res. Lett., 43,
7160–7167, https://doi.org/10.1002/2016GL069453, 2016.
Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Kuipers Munneke, P.,
King, J., and Barrand, N. E.: Surface melt and ponding on Larsen C Ice Shelf
and the impact of föhn winds, Antarct. Sci., 26,
https://doi.org/10.1017/S0954102014000339, 2014.
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389,
https://doi.org/10.1038/s41586-018-0212-1, 2018.
McGrath, D., Steffen, K., Holland, P. R., Scambos, T., Rajaram, H.,
Abdalati, W., and Rignot, E.: The structure and effect of suture zones in the
Larsen C Ice Shelf, Antarctica, J. Geophys. Res.-Earth, 119,
588–602, https://doi.org/10.1002/2013JF002935, 2014.
Morris, E. M. and Vaughan, D. G.: Spatial and Temporal Variation of Surface
Temperature on the Antarctic Peninsula and the Limit of Viability of Ice
Shelves, Antarct. Res. Ser., 79, 61–68, https://doi.org/10.1029/AR079p0061, 2003.
Mulvaney, R., Abram, N. J., Hindmarsh, R. C. A., Arrowsmith, C., Fleet, L.,
Triest, J., Sime, L. C., Alemany, O., and Foord, S.: Recent Antarctic
Peninsula warming relative to Holocene climate and ice-shelf history,
Nature, 489, 141–144, https://doi.org/10.1038/nature11391, 2012.
Polashenski, C., Golden, K. M., Perovich, D. K., Skyllingstad, E., Arnsten,
A., Stwertka, C., and Wright, N.: Percolation blockage: A process that
enables melt pond formation on first year Arctic sea ice, J. Geophys. Res.-Oceans, 122, 413–440, https://doi.org/10.1002/2016JC011994, 2017.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet. Sci.
Lett., 412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van
Den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505,
https://doi.org/10.1038/nature10968, 2012.
Qiao, G., Li, Y., Guo, S., and Ye, W.: Evolving instability of the scar inlet
ice shelf based on sequential landsat images spanning 2005–2018, Remote
Sens., 12, 36, https://doi.org/10.3390/RS12010036, 2020.
Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B
ice shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–510, https://www.cambridge.org/core (last access: 15 December 2021), 2004.
Rignot, E., Casassa, G., Gogineni, P.,
Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the
Antarctic Peninsula following the collapse of Larsen B ice shelf, Geophys.
Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697, 2004.
Rignot, E., Jacobs, S., Mouginot, B., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 263–266, https://doi.org/10.1126/science.1237966, 2013.
Robel, A. A. and Banwell, A. F.: A Speed Limit on Ice Shelf Collapse Through
Hydrofracture, Geophys. Res. Lett., 46, 12092–12100,
https://doi.org/10.1029/2019GL084397, 2019.
Rott, H., Skvarca, P., and Nagler, T.: Rapid Collapse of Northern Larsen Ice Shelf, Antarctica, Science, 271, 788–792, 1996.
Rott, H., Rack, W., Nagler, T., and Skvarca,
P.: Climatically induced retreat and collapse of norther Larsen Ice Shelf,
Antarctic Peninsula, Ann. Glaciol., 27, 86–92,
https://doi.org/10.3189/s0260305500017262, 1998.
Sandhäger, H., Rack, W., and Jansen, D.: Model investigations of Larsen B
Ice Shelf dynamics prior to the breakup, https://www.researchgate.net/publication/241354171_Model_investigations_of_Larsen_B_Ice_Shelf_dynamics_prior_to_the_breakup (last access: 29 January 2022), 2005.
Scambos, T., Hulbe, C., and Fahnestock, M.: Climate-Induced Ice Shelf
Disintegration in the Antarctic Peninsula, Antarct. Res. Ser., 79, 79–92, https://doi.org/10.1029/AR079p0079, 2003.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link
between climate warming and break-up of ice shelves in the Antarctic
Peninsula, J. Glaciol., 46, 516–530, https://doi.org/10.3189/172756500781833043,
2000.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B
embayment, Antarctica, Geophys. Res. Lett., 31, L18402,
https://doi.org/10.1029/2004GL020670, 2004.
Schodlok, M. P., Menemenlis, D., and Rignot, E. J.: Ice shelf basal melt
rates around Antarctica from simulations and observations, J. Geophys. Res.-Oceans, 121, 1085–1109, https://doi.org/10.1002/2015JC011117, 2016.
Stroeve, J. and Shuman, C.: Historical Arctic and Antarctic Surface Observational Data, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA [data set], https://doi.org/10.5067/4DIN375AWFIO, 2004.
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and Van Den Broeke,
M. R.: Satellite-based estimates of Antarctic surface meltwater fluxes,
Geophys. Res. Lett., 40, 6148–6153, https://doi.org/10.1002/2013GL058138, 2013.
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke,
P., Van Meijgaard, E., and Van Den Broeke, M. R.: Divergent trajectories of
Antarctic surface melt under two twenty-first-century climate scenarios,
Nat. Geosci., 8, 927–932, https://doi.org/10.1038/ngeo2563, 2015.
Turton, J. V., Kirchgaessner, A., Ross, A. N., and King, J. C.: Does
high-resolution modeling improve the spatial analysis of föhn flow over
the Larsen C Ice Shelf?, Weather, 72, 192–196, https://doi.org/10.1002/wea.3028, 2017.
Turton, J. V., Kirchgaessner, A., Ross, A. N., and King, J. C.: The spatial
distribution and temporal variability of föhn winds over the Larsen C
ice shelf, Antarctica, Q. J. Roy. Meteor. Soc., 144, 1169–1178, https://doi.org/10.1002/qj.3284, 2018.
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic
Peninsula ice shelf, Geophys. Res. Lett., 32, L12815,
https://doi.org/10.1029/2005GL023247, 2005.
Van Wessem, J. M. and Laffin, M. K.: Regional Atmospheric Climate Model 2 (RACMO2), version 2.3p2 (2.3p2), Zenodo [data set], https://doi.org/10.5281/zenodo.3677642, 2020.
Wang, W., Zender, C. S., van As, D., Fausto, R. S., and Laffin, M. K.:
Greenland Surface Melt Dominated by Solar and Sensible Heating, Geophys.
Res. Lett., 48, e2020GL090653, https://doi.org/10.1029/2020GL090653, 2021.
Wang, X., Zhang, Z., Wang, X., Vihma, T., Zhou, M., Yu, L., Uotila, P., and
Sein, D. V.: Impacts of strong wind events on sea ice and water mass
properties in Antarctic coastal polynyas, Clim. Dynam., 57,
3505–3528, https://doi.org/10.1007/s00382-021-05878-7, 2021.
Wiesenekker, J. M., Munneke, P. K., van den Broeke, M. R., and Paul Smeets,
C. J. P.: A multidecadal analysis of Föhn winds over Larsen C ice shelf
from a combination of observations and modeling, Atmosphere, 9, 172,
https://doi.org/10.3390/atmos9050172, 2018.
Zheng, F., Li, J., Clark, R. T., and Nnamchi, H. C.: Simulation and
projection of the Southern Hemisphere annular mode in CMIP5 models, J.
Climate, 26, 9860–9879, https://doi.org/10.1175/JCLI-D-13-00204.1, 2013.
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while...