Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-1141-2022
https://doi.org/10.5194/tc-16-1141-2022
Research article
 | 
01 Apr 2022
Research article |  | 01 Apr 2022

Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model

Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang

Related authors

SICNetseason V1.0: a transformer-based deep learning model for seasonal Arctic sea ice prediction by integrating sea ice thickness data
Yibin Ren, Xiaofeng Li, and Yunhe Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-200,https://doi.org/10.5194/gmd-2024-200, 2024
Preprint under review for GMD
Short summary
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019,https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017
Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu
The Cryosphere, 13, 1025–1042, https://doi.org/10.5194/tc-13-1025-2019,https://doi.org/10.5194/tc-13-1025-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary

Cited articles

Barnston, A. G. and Ropelewski, C. F.: Prediction of ENSO Episodes Using Canonical Correlation Analysis, J. Climate, 5, 1316–1345, https://doi.org/10.1175/1520-0442(1992)005<1316:poeeuc>2.0.co;2, 1992. 
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010jcli3775.1, 2011. 
Blanchard-Wrigglesworth, E., Cullather, R., Wang, W., Zhang, J., and Bitz, C.: Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook, Geophys. Res. Lett., 42, 8042–8048, https://doi.org/10.1002/2015GL065860, 2015. 
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018. 
Download
Short summary
We develop a regional linear Markov model consisting of four modules with seasonally dependent variables in the Pacific sector. The model retains skill for detrended sea ice extent predictions for up to 7-month lead times in the Bering Sea and the Sea of Okhotsk. The prediction skill, as measured by the percentage of grid points with significant correlations (PGS), increased by 75 % in the Bering Sea and 16 % in the Sea of Okhotsk relative to the earlier pan-Arctic model.