Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-1141-2022
https://doi.org/10.5194/tc-16-1141-2022
Research article
 | 
01 Apr 2022
Research article |  | 01 Apr 2022

Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model

Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang

Related authors

Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019,https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017
Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu
The Cryosphere, 13, 1025–1042, https://doi.org/10.5194/tc-13-1025-2019,https://doi.org/10.5194/tc-13-1025-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023,https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023,https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
Heather Christine Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-211,https://doi.org/10.5194/tc-2022-211, 2022
Revised manuscript accepted for TC
Short summary

Cited articles

Barnston, A. G. and Ropelewski, C. F.: Prediction of ENSO Episodes Using Canonical Correlation Analysis, J. Climate, 5, 1316–1345, https://doi.org/10.1175/1520-0442(1992)005<1316:poeeuc>2.0.co;2, 1992. 
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010jcli3775.1, 2011. 
Blanchard-Wrigglesworth, E., Cullather, R., Wang, W., Zhang, J., and Bitz, C.: Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook, Geophys. Res. Lett., 42, 8042–8048, https://doi.org/10.1002/2015GL065860, 2015. 
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018. 
Download
Short summary
We develop a regional linear Markov model consisting of four modules with seasonally dependent variables in the Pacific sector. The model retains skill for detrended sea ice extent predictions for up to 7-month lead times in the Bering Sea and the Sea of Okhotsk. The prediction skill, as measured by the percentage of grid points with significant correlations (PGS), increased by 75 % in the Bering Sea and 16 % in the Sea of Okhotsk relative to the earlier pan-Arctic model.