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Abstract. In this study, a regional linear Markov model is
developed to assess seasonal sea ice predictability in the
Pacific-Arctic sector. Unlike an earlier pan-Arctic Markov
model that was developed with one set of variables for all
seasons, the regional model consists of four seasonal mod-
ules with different sets of predictor variables, accommodat-
ing seasonally varying driving processes. A series of sensi-
tivity tests are performed to evaluate the predictive skill in
cross-validated experiments and to determine the best model
configuration for each season. The prediction skill, as mea-
sured by the sea ice concentration (SIC) anomaly corre-
lation coefficient (ACC) between predictions and observa-
tions, increased by 32 % in the Bering Sea and 18 % in the
Sea of Okhotsk relative to the pan-Arctic model. The re-
gional Markov model’s skill is also superior to the skill of an
anomaly persistence forecast. SIC trends significantly con-
tribute to the model skill. However, the model retains skill
for detrended sea ice extent predictions for up to 7-month
lead times in the Bering Sea and the Sea of Okhotsk. We find
that subsurface ocean heat content (OHC) provides a crucial
source of prediction skill in all seasons, especially in the cold
season, and adding sea ice thickness (SIT) to the regional
Markov model has a substantial contribution to the predic-
tion skill in the warm season but a negative contribution in
the cold season. The regional model can also capture the sea-
sonal reemergence of predictability, which is missing in the
pan-Arctic model.

1 Introduction

Sea ice acts as a major component of the Arctic climate sys-
tem through modulating the radiative flux, heat, and momen-
tum exchanges between the ocean and the atmosphere (Pe-
terson et al., 2017; Porter et al., 2011; Smith et al., 2017).
Sea ice also modulates sea surface salinity, which is one of
the key drivers of thermohaline circulations (Sévellec et al.,
2017). The rapid retreat of Arctic sea ice extent in the past
few decades has been considered a key indicator of climate
change (Koenigk et al., 2016; Swart, 2017). The decreasing
Arctic sea ice extent contributes to polar temperature ampli-
fication (Kim et al., 2016; Screen and Francis, 2016), an in-
crease in wintertime snowfall over Siberia, northern Canada,
and Alaska (Deser et al., 2010), polar stratospheric cool-
ing (Screen et al., 2013; Wu et al., 2016), and potentially
contributes to a weakening of the mid-latitude jet (Francis
and Vavrus, 2012) and increased frequency of cold Northern
Hemisphere mid-latitude winter events (Cohen et al., 2020;
Meleshko et al., 2018).

The rapid retreat of summer Arctic sea ice extent has also
created more commercial opportunities in the newly opened
Arctic waters. The Northwest Passage (through northern
Canada) and the Northern Sea Route (north of Russia) could
offer faster and less expensive shipping between the Pa-
cific and Atlantic (Smith and Stephenson, 2013). Informa-
tion on Arctic marine accessibility and ice-free season du-
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ration in the marginal ice zone would enable planning of
merchant shipping, conservation efforts, resource extraction,
and fishing activities. The growing polar ecotourism industry
could also benefit from shrinking sea ice cover. Therefore,
increased efforts have been devoted to developing Arctic sea
ice forecast systems in recent decades.

Substantial efforts have gone toward developing both sta-
tistical and dynamical sea ice prediction models. Dynamic
models numerically solve equations that govern the sea ice
physics using sea ice, ocean, and/or atmospheric conditions
to initialize the models for each season (Bushuk et al., 2019,
2020, 2021; Dai et al., 2020; Msadek et al., 2014). Numer-
ous studies using fully coupled general circulation models
(GCMs) have quantified the seasonal prediction skill of pan-
Arctic sea ice extent (SIE) and have found forecast skill for
detrended pan-Arctic SIE at lead times of 1 to 6 months
(Blanchard-Wrigglesworth et al., 2015; Day et al., 2014b;
Guemas et al., 2016a; Peterson et al., 2015; Sigmond et al.,
2013). Bushuk et al. (2017a) evaluated regional Arctic sea ice
prediction skill in a Geophysical Fluid Dynamics Laboratory
(GFDL) seasonal prediction system. They found skillful de-
trended regional SIE predictions, and found that skill varied
strongly with both region and season.

On the other hand, statistical methods are also appealing
for seasonal sea ice predictions (Petty et al., 2017). Statisti-
cal models capture relationships between sea ice and oceanic,
atmospheric, or time-lagged sea ice predictors. Recently, sta-
tistical methods have been used to provide sea ice field pre-
dictions using numerous techniques such as linear Markov
models (Chen and Yuan, 2004; Yuan et al., 2016), vector au-
toregressive models (L. Wang et al., 2019, 2016), deep neu-
ral networks (Andersson et al., 2021; Chi and Kim, 2017;
Wang et al., 2017), Bayesian logistic regressions (Horvath
et al., 2020), and the combination of complex networks and
Gaussian process regression models (Gregory et al., 2020).
In some cases, statistical models provide better performance
than dynamical models (Hamilton and Stroeve, 2016). For
example, Yuan et al. (2016) showed that a linear Markov
model makes skillful sea ice concentration (SIC) predictions
for up to 9-month lead times in many regions of the Arc-
tic and that this statistical model consistently demonstrated
more sea ice prediction skill than the NOAA/NCEP Cli-
mate Forecast System (CFSv2) and the Canadian Seasonal
to Inter-annual Prediction System (CanSIPS) at the seasonal
timescale. The Markov model prediction skill also exhibits
strong regional and seasonal dependence.

Two common characteristics of sea ice predictability
emerged from both dynamic (e.g., CFSv2 and GFDL climate
models) and statistical models (e.g., linear Markov models
and linear regression models). First, low prediction skill oc-
curs in the Pacific sector of the Arctic, particularly in the
Bering Sea and the Sea of Okhotsk, compared with other
Arctic regions (Bushuk et al., 2017a; Yuan et al., 2016).
Many factors may lead to this low predictability. Bushuk et
al. (2017a) suggest that less persistent sea ice anomalies in

the North Pacific sector possibly lead to less predictability
in the region by the GFDL dynamical model. The Markov
model of Yuan et al. (2016) was built in multivariate empiri-
cal orthogonal function (MEOF) space in the pan-Arctic and
the leading modes are dominated by the large long-term trend
and strong climate variability in the Atlantic sector (Fig. 1).
So, the signal of sea ice variability in the Pacific sector could
be underrepresented in the model. Therefore, it is necessary
to evaluate the sea ice predictability in the Pacific sector with
a new regional model.

Second, many studies have shown evidence of an Arctic
sea ice spring predictability barrier that causes forecasts ini-
tialized prior to May to be less skillful and imposes a rel-
atively sharp limit on regional summer sea ice prediction
skill (Bushuk et al., 2017a; Day et al., 2014b; Yuan et al.,
2016). Spring sea ice variability is complicated by surface
melt ponds. The sea ice-driven processes in spring could be
different from those in other seasons. The spring barrier may
result from a sharp increase in predictability at melt onset,
when sea ice–albedo feedback acts to enhance and continue
the preexisting export-generated mass anomaly (Bushuk et
al., 2020). In addition, summer initialization months have lit-
tle sea ice coverage and little intrinsic memory of sea ice and,
therefore, require another source of memory to provide win-
ter SIE prediction skill.

In fact, re-emergence mechanisms can provide sources
of sea ice predictability on timescales from a few months
to 1 year (Blanchard-Wrigglesworth et al., 2011). The re-
emergence mechanism mainly relies on the persistence of
some sea ice-related variables such as sea ice thickness
(SIT) and ocean temperature. Previous studies have shown
that summer sea surface temperature (SST) anomalies can
provide a significant source of SIE predictability in the
ice growth season (Blanchard-Wrigglesworth et al., 2011;
Bushuk and Giannakis, 2017; Cheng et al., 2016; Dai et al.,
2020). Initializing the upper ocean heat content (OHC) in
a seasonal prediction system can also yield remarkable re-
gional skill for winter sea ice (Bushuk et al., 2017a). More-
over, assimilating SIT data can slightly improve the SIC fore-
cast and particularly benefit sea ice prediction in summer,
which is attributed to the long-lived SIT anomalies and their
impact on summer sea ice (Blockley and Peterson, 2018;
Bushuk et al., 2017b; Guemas et al., 2016b; Xie et al., 2016).
Because sea ice is closely coupled with the atmosphere and
the ocean, sea ice predictability is provided by the intrin-
sic memory of sea ice and its related variables, and accu-
rate initial conditions are of importance for sea ice predic-
tions (Blanchard-Wrigglesworth et al., 2011; Guemas et al.,
2016b). Current climate models used for sea ice predictions
are usually initialized using various atmospheric and oceanic
variables, such as SIC, SIT, OHC, SST, surface air temper-
ature (SAT), or other data from existing reanalysis (Bushuk
et al., 2017a; Dai et al., 2020; Kimmritz et al., 2019; Yuan et
al., 2016).
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In this study, we develop a regional linear Markov model
for the seasonal prediction of SIC in the Pacific sector with
a focus on understanding unique sea ice driving processes
in different seasons. We follow the framework of the pan-
Arctic linear Markov model (Yuan et al., 2016). Unlike the
pan-Arctic model that was developed with one set of vari-
ables (SIC, SAT, SST) for all seasons and the entire Arctic
region, the regional model consists of four modules with sea-
sonal dependent variables, which isolate the dominant pro-
cesses for each targeted season. Regional relevant predictors
are evaluated. New variables, including surface net radiative
flux, turbulent heat flux, and pressure and wind fields, as
well as SIT and OHC, are introduced to the model experi-
ments. Sea ice predictability is assessed at grid points and
over all seasons, and subsequently compared with the pan-
Arctic model and other dynamic models.

2 Data and methodology

2.1 Data

Building on the extensive literature studying the predictabil-
ity and variability of sea ice (Bushuk and Giannakis, 2017;
Bushuk et al., 2020; Guemas et al., 2016a; Horvath et al.,
2021; Lenetsky et al., 2021; Yuan et al., 2016), we firstly
chose many kinds of oceanic and atmospheric variables and
examined their correlations with SIC. The results show that
SIC is highly related to OHC in the upper 300 m, SIT, SST,
SAT, surface net radiative flux, surface net turbulent heat
flux, and geopotential height (GPH) and wind vector at dif-
ferent levels, including 850 to 200 hPa. Due to the barotropic
nature of the polar troposphere (Chen, 2005; Ting, 1994) and
the low correlation between sea-level pressure and SIC, we
chose GPH and wind vector at 850 hPa to define the low-
level atmospheric circulation, whose interaction with sea ice
is stronger relative to that in higher levels. Therefore, we
choose to define the coupled atmosphere–ice–ocean Arctic
climate system with nine variables: SIC, OHC in the upper
300 m, SIT, SST, SAT, surface net radiative flux, surface net
turbulent heat flux, 850 hPa GPH, and 850 hPa wind vector.

Monthly SICs in 25 km× 25 km grids are obtained from
the National Snow and Ice Data Center (NSIDC) from
1979 to 2020 (Comiso, 2017). The dataset is generated
from brightness temperatures derived from Nimbus-7 Scan-
ning Multichannel Microwave Radiometer (SMMR), De-
fense Meteorological Satellite Program (DMSP) -F8, -F11,
and -F13 Special Sensor Microwave/Imager (SSM/I), and
DMSP-F17 Special Sensor Microwave Imager/Sounder (SS-
MIS) using the bootstrap algorithm. Monthly SITs are from
the Pan-Arctic Ice-Ocean and Assimilating System (PI-
OMAS) model data. PIOMAS is a sea ice–ocean reanaly-
sis product that compares reasonably well to available satel-
lite, aircraft, and in situ SIT measurements (Schweiger et al.,
2011). The system applies a 12-category SIT and enthalpy

distribution (Zhang and Rothrock, 2003) and is driven by
NCEP/NCAR reanalysis atmospheric forcing including 10 m
surface winds and 2 m SAT.

All atmospheric variables and SST with a spatial res-
olution of 1◦× 1◦ are from the latest European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis
product ERA5 (Hersbach et al., 2020) and are applied to rep-
resent the conditions of the atmosphere and ocean. ERA5 is
produced using the version of ECMWF’s Integrated Forecast
System (IFS), CY41R2, based on a hybrid incremental 4D-
Var system, with 137 hybrid sigma/pressure (model) levels in
the vertical direction, with the top level at 0.01 hPa. The OHC
used here is global ocean and sea ice reanalysis (ORAS5:
Ocean Reanalysis System 5) monthly mean data and is de-
veloped by the European Centre for Medium-Range Weather
Forecasts (ECMWF) OCEAN5 ocean analysis–reanalysis
system (Zuo et al., 2019). ORAS5 includes five ensemble
members and covers the period from 1979 onwards. It is re-
garded as a global eddy-permitting ocean ensemble reanaly-
sis product. Both the forcing fields and observational datasets
are updated in ORAS5.

2.2 The model

The idea of using a Markov model for climate prediction
is to build multivariate models, aiming to capture the co-
variability in the coupled atmosphere–ocean–sea ice system
instead of linearly regressing on individual predictors. Yuan
et al. (2016) applied this statistical approach to predict SIC in
the Arctic at a seasonal timescale and showed that the Lam-
ont statistical model outperformed the NOAA CFSv2 oper-
ational model and CanSIPS in sea ice prediction. They used
MEOF as the building blocks of the model to filter out inco-
herent small-scale features that are basically unpredictable.
Similar Markov models were also developed to study El
Niño–Southern Oscillation (ENSO) predictability (Cañizares
et al., 2001; Xue et al., 2000) and for East Asian monsoon
forecasts (Wu et al., 2013). The success of the Markov model
is attributed to the dominance of several distinct modes in
the coupled atmosphere–ocean–sea ice system and to the
model’s ability to pick up these modes.

Here we focus on the atmosphere–ocean–sea ice interac-
tive processes that are unique to the Pacific sector and de-
velop a regional linear Markov model for the seasonal pre-
diction of SIC. The model consists of four modules with
seasonally dependent variables. The model domain extends
from 40 to 84◦ N in latitude and from 120 to 240◦ E in longi-
tude (Fig. 1). To reduce model dimensions, we remove land
grid cells, mostly open water grid cells and mostly 100 %
ice cover grid cells from the sea ice field. The mostly open
water cells are defined by the grids where SIC ≥ 15 % only
occurred less than 4 % of the total all-season time series (492
months), and mostly ice covered cells are defined by the grids
where SIC ≥ 95 % for more than 96 % of total time series.
SIC at the rest grid cells ranges from 0 % to 100 %.
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Our model is constructed in the MEOF space. The base
functions of the model’s spatial dependence consist of the
eigenvectors from the MEOF, while the temporal evolution
of the model is a Markov process with its transition func-
tions determined from the corresponding principal compo-
nents (PCs). We use only several leading MEOF modes,
which greatly reduce model space and filter out unpredictable
small-scale features. This method of reducing model dimen-
sion has been successfully used in earlier Antarctic and Arc-
tic sea ice predictability studies (Chen and Yuan, 2004; Yuan
et al., 2016).

We preselect SIC, OHC, SIT, SST, SAT, surface net radia-
tive flux, surface net turbulent heat flux, and GPH and winds
at 850 hPa to represent different sea ice-driving processes in
the Pacific sector. We create anomaly time series for all vari-
ables from 1979 to 2020 by subtracting climatologies of the
same period from monthly mean data. A normalization is ap-
plied to the time series at each grid point for all variables.
To emphasize sea ice variability in the model construction,
we weight SIC by 2 and other variables by 1, although the fi-
nal model skill is not very sensitive to this choice of weight.
The weighted variables are stacked up into a single matrix
V(n,m), where n is the number of grid points of all fields
and m is the length of the time series. We then decompose V
into eigenvectors (spatial patterns) E and their corresponding
PCs (time series) P:

V= EPT, (1)

where the columns of E are orthogonal and the columns of P
are orthonormal; the superscript T denotes matrix transpose.
It greatly reduces the model space by truncating Eq. (1) to
the several leading modes. The Markov model is computed
using the single-step correlation matrix, that is, a transition
matrix A that satisfies the following linear relation:

Pi+1 = APi + ei, (2)

where i denotes the ith month and ei is the error in the model
fit. Transition A is calculated by multiplying Eq. (2) with PT

i :

Pi+1PT
i = APiPT

i + eiPT
i , (3)

For the best model fit, ei and PT
i should have no correlation.

Thus,

A=
(
Pi+1PT

i

)(
PiPT

i

)−1
. (4)

A is constructed to be seasonally dependent because of the
strong seasonality of SIC and related variables. Thus, Eq. (4)
is applied to 12 subsets of PCs to obtain different transition
matrices for each of the 12 calendar months.

After the Markov model is formulated, the SIC prediction
can be generated through the following eight steps: (1) to ex-
amine which variables have the highest prediction potential
in the Pacific sector, we create 10 climate variable combina-
tions representing different driving processes. (2) The PCs

corresponding to each initial multivariate space are calcu-
lated by the MEOF Eq. (1). (3) Transition matrices, A, for
each calendar month are calculated by Eq. (4). (4) The pre-
dictions of the PCs are made by truncating to the first sev-
eral modes and applying the appropriate transition matrices
at different lead times. “Lead time” refers to the number of
months prior to the target month in which the forecast was
initialized. For example, lead-1 prediction of January SIE is
based on December data. (5) The predicted PCs are com-
bined with the respective eigenvectors to produce a spatially
resolved SIC anomaly prediction for each variable combina-
tion. (6) We evaluate the prediction skill measured by the SIC
anomaly correlation coefficient (ACC), percentage of grid
points with significant ACC (PGS), and root mean square
error (RMSE) using cross-validated model experiments to
identify the superior model for each season. (7) The com-
plete SIC anomaly prediction can then be generated by com-
bining predicted PCs by the corresponding optimal model
in each season with eigenvectors. We differentiate the sea-
sons as follows: winter (December through February), spring
(March through May), summer (June through August), and
autumn (September through November). (8) The predicted
SIC anomalies are divided by a weight value of 2, multiplied
by the standard deviation, and added to the climatology to
generate the complete prediction field.

To determine model variables and the number of modes to
be used in the model, we evaluate the prediction skill at all
grid points and all seasons in a cross-validated fashion for
the period 1980–2020 by calculating the ACC and RMSE
between predictions and observations. Notably, the dramatic
declining trend in SIC prohibits us to use the first half of the
time series for training the model and the second half of the
time series to validate the model since the climate system
mean state has changed dramatically over the last 4 decades.
Another cross-validation scheme (Barnston and Ropelewski,
1992) is jackknifing, where one case is withheld from the
regression development in the Markov model as an inde-
pendent sample for testing. Thus, we built a Markov model
for each month with a 1-year moving window of data re-
moval, and then used this window of predictions to evaluate
the model performance. Here, we subtract the 1 year of data
from the PCs and recalculate the transition matrix in Eq. (4);
then 12-month predictions are generated for that year. This
procedure is repeated for each year of the time series. Such
a cross-validated experimental design reduces artificial skill
without compromising the length of the time series.

The long-term trend is an essential part of the Arctic sea
ice variability. A substantial declining trend exists in Arctic
SIC, particularly in the Barents Sea, the Kara Sea, the Beau-
fort Sea, and the Chukchi Sea (Fig. 1). However, outside of
the Arctic Basin, the long-term trends are relatively weak in
the Pacific sector. As the trends are parts of the total variabil-
ity, we retain the SIC trends in anomalies while building the
model and then conduct a post-prediction evaluation of the
impact of trends on the model skill.
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3 Model construction and assessments

3.1 EOF analysis of Pacific SIC

Before constructing the model, we first examine whether the
EOF analysis can isolate the regional and seasonal SIC vari-
ability in the Pacific-Arctic sector. Figure 2 shows the eigen-
vectors of the three leading EOF modes of SIC. The first
mode of SIC variability, accounting for 23 % of the total vari-
ance, mainly shows a positive pattern within the Arctic Basin
from 1979 to 2002 and a negative pattern after 2003, with
a record low in 2007 and 2012, representing the decreasing
trend in summer and early fall SIC. The declining trend is
heavily loaded inside the Arctic Basin from the East Siberian
Sea to the Beaufort Sea. The second SIC mode (9 % of to-
tal variance) primarily captures out-of-phase SIC anomalies
in the Bering Sea and the Sea of Okhotsk and is associated
with the Aleutian–Icelandic low seesaw, representing SIC
variability in cold seasons (Frankignoul et al., 2014). This
pattern suggests consistently positive SIC anomalies in the
Bering Sea and negative anomalies in the Sea of Okhotsk
after 2004. The SIC variability in the central sector (approx-
imately 60–70◦ N) stands out in the third EOF mode (7 % of
the total variance), which is a commonly observed feature in
the region during spring and autumn. This finding shows that
the EOF (MEOF) analysis can well isolate the regional and
seasonal SIC variability including the trend in the Pacific-
Arctic sector.

We further divided the SIC time series into four seasons
and conducted respective EOF analyses. The results show
that fewer modes can explain the dominant SIC variance in
autumn and summer, benefiting from the large SIC variabil-
ity and trend (Fig. S1 in the Supplement). For example, the
leading 10 modes can explain 70 % of the SIC total variance
in autumn and summer, while about 25 modes are needed for
explaining the same amount of variance in cold seasons. It
turns out that the several leading modes can explain the dom-
inant SIC variability. This is an important premise to reduce
the model dimension and, more importantly, to filter out in-
coherent small-scale features that are likely unpredictable. In
addition, it is necessary to build the sea ice prediction model
for individual seasons because of the differences in seasonal
patterns of variability and the different number of leading
modes required to capture predictable variability.

3.2 Construction of an optimal model for each season

A practical issue in building a Markov model in MEOF
spaces is which combination of variables and number of lead-
ing modes are to be retained in the model. Using too few
modes may miss some predictable signals, and too many may
result in overfitting and contaminate the model with inco-
herent small-scale features. To determine optimal predictor
variables and reasonable mode truncations, we calculate the
prediction skill from a series of cross-validated model exper-

iments, which used different numbers of modes and different
variables. Table 1 shows the detailed variable combinations.
Models V2–V4, V6-V8, and V10–V11 are weighted toward
thermodynamic processes, whereas V9 and V12 represent in-
tegration of thermodynamic and dynamic processes.

The cross-validation scheme is carried out for the time se-
ries to produce predictions at 1- to 12-month leads. The PGS
and mean RMSE for each lead time in each season are calcu-
lated. To avoid missing predictable signals, we initially retain
large amounts of modes (up to 52) in the model and then nar-
row the range of mode numbers to determine the best model
configuration for each season. Figure S2 presents the PGS
for each lead time for winter target months. It shows that
the model prediction skill in winter steeply decreases after
36 modes in most lead months. Similarly, RMSE increases
rapidly after 36 modes (Fig. S3). This indicates that includ-
ing modes beyond mode 36 in winter, mainly representative
of unpredictable small-scale features, leads to the rapid de-
crease of predictive skill.

To select a model configuration that fits all lead times, we
average the 12 panels in Figs. S2 and S3, respectively, and
display them in the first column of Fig. S4. Similarly, pre-
dictive skills for other seasons are also examined. We fur-
ther narrow the modes’ range to display the predictive skill
according to Fig. S4 so that we can determine the optimal
model more accurately (Fig. 3). Generally, the model skills
are better in summer and autumn than in winter and spring,
and more modes are needed in the cold season to capture the
predictable signal of SIC, which is likely due to the weaker
trends in these months. Models with high correlation also
have smaller RMSE but the RMSE differences between mod-
els are relatively small.

Based on the PGS and RMSE, we primarily chose three
superior model configurations marked by black boxes in
Fig. 3 for each season, respectively. To determine which
model configuration produces the best prediction in each sea-
son, we spatially average the SIC prediction skill from these
superior models with 1- to 12-month leads (Figs. 4 and 5).
Figure 4 shows the cross-validation skill measured by PGS.
In general, the predictive skill in the warm season is higher
than that in the cold season, although the RMSEs are also rel-
atively large in the warm season (Fig. 5). The model predic-
tion skills based on those superior model configurations have
similar variability and magnitude in winter and spring, re-
spectively, while large differences in these occur in the warm
season, especially in autumn. It also shows that the model
prediction skill steeply decreases at the 2-month lead in win-
ter and at the 2- and 3-month leads in spring.

As a model construction principle, we choose the mini-
mum number of variables and modes to achieve the same
level of skill, avoiding possible overfitting. Based on the PGS
and RMSE, we chose V9M16 as the best model in winter
since it shows the highest PGS. Similarly, we chose V11M20
in spring and V5M10 in summer. In autumn, the model skill
from V5 is obviously superior at 1–5 lead months, while

https://doi.org/10.5194/tc-16-1141-2022 The Cryosphere, 16, 1141–1156, 2022



1146 Y. Wang et al.: Reassessing seasonal sea ice predictability

Figure 1. Arctic SIC trends (left) and standard deviation (right) computed using SIC anomalies over all 12 months of the period 1979–2020.
The Pacific-Arctic model domain is enclosed by blue lines, which covers 40–84◦ N and 120–240◦ E. Two focused areas marked in black
boxes in the Bering Sea (58–62◦ N and 182–192◦ E) and the Sea of Okhotsk (52–56◦ N and 144–152◦ E) have large standard deviations and
are selected to evaluate the ACC skill improvement in the regional model compared with the pan-Arctic Markov model developed by Yuan
et al. (2016).

Figure 2. The eigenvectors and PCs of the three leading EOF modes of SIC in the Pacific-Arctic sector for the period 1979–2020. The bottom
panel shows the explained variance as a function of the number of leading modes of SIC.

The Cryosphere, 16, 1141–1156, 2022 https://doi.org/10.5194/tc-16-1141-2022
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Table 1. Variable combinations in cross-validated experiments. V1 represents the no. 1 variable combination.
√

represents the variable
included in the corresponding combination.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

SIC
√ √ √ √ √ √ √ √ √ √ √ √

OHC
√ √ √ √ √ √ √ √ √ √

SST
√ √ √ √ √

SIT
√ √

SAT
√ √

Surface net turbulent heat flux
√ √ √

Surface net radiative flux
√ √ √

850 hPa GPH, U , V
√ √

Figure 3. Mean PGS and mean RMSE between the observations and predictions in four seasons. (a) Mean PGS is obtained by averaging
all lead months for winter predictions. The x axis represents the number of MEOF modes, and the y axis represents the combination of the
variables corresponding to Table 1. Panels (b), (e), and (f) are the same as (a) except for spring, summer, and autumn, respectively. Panels
(c), (d), (g), and (h) are the same as (a), (b), (e), and (f) except for RMSE.

V12 dominates prediction skill beyond the 8-month lead. We
decided to choose V5M7 because it has a relatively higher
mean skill and fewer variables and modes.

The contribution of different variables in ice prediction
skill for each season is also assessed. OHC contributes more
model prediction skill than SST in all seasons (Fig. 3). The

model built on the data matrix of SIC and OHC performs
better in winter and spring, which indicates that the OHC
provides a considerable source of memory for SIC prediction
skill in the cold season and plays a key role in the evolution of
sea ice conditions. The results are consistent with many pre-
vious studies (Bushuk et al., 2017a; Dai et al., 2020; Guemas
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et al., 2016b; Lenetsky et al., 2021). 850 hPa GPH and winds
can still contribute additional prediction skill in winter since
the model with OHC, GPH, and winds slightly outperforms
the case without GPH and winds (Fig. 4). 850 hPa GPH and
wind not only affect the heat and moisture transported by the
atmospheric circulation anomaly but also drive sea ice drift.
For example, the dipole structure anomaly of the Arctic at-
mospheric circulation shows strong meridionality and plays a
profound role in sea ice export/import, and heat and moisture
transport through the Pacific-Arctic sector (Wu et al., 2006).

Similarly, SST and turbulent heat flux also contribute ad-
ditional skill in spring although the contribution is minor
(Figs. 3 and 4). It is worth mentioning that the variable such
as SST with minor additional contributions to the model does
not mean that it is a minor contributor since the contributions
from different variables to prediction skill partially overlap.
In addition, adding SIT to the model has a substantial con-
tribution to the prediction skill in the warm season, indi-
cating that sea ice thickness is a key source of sea ice pre-
dictability within the Arctic Basin in the warm season, espe-
cially in summer, which is consistent with previous studies
(Blanchard-Wrigglesworth et al., 2011; Blockley and Peter-
son, 2018; Day et al., 2014a; Morioka et al., 2021; Tian et al.,
2021; Yuan et al., 2016). However, SIT has a negative contri-
bution to the prediction skill in the cold season (Fig. 3). The
contributions of SIT to the prediction skill in autumn are very
sensitive to the number of lead months in that the skill steeply
decreases beyond a 5-month lead (Fig. 4). In other words, the
model did not perform well in autumn prediction initialized
in winter and spring. In addition, the surface net radiative flux
also contributes to the model skill in the cold season (Fig. 3).
Early studies suggested that the surface longwave radiation
plays an indispensable role in the polar climate system in the
cold season when shortwave radiation is at its annual min-
imum (Huang et al., 2015; Kapsch et al., 2013; Lee et al.,
2017; Liu and Key, 2014; Luo et al., 2017; Y. Wang et al.,
2019).

3.3 Assessment of model skill

To test the forecast skill of the model, the SIC predictions
were evaluated at each grid cell and for all seasons using the
ACC and RMSE between predicted and observed anomalies,
and the skill is presented at 3, 6, 9, and 12 lead months. In
winter (DJF), high forecast skill is concentrated in the Arctic
marginal seas and peripheral seas: the southern Chukchi Sea
and Sea of Okhotsk (Fig. 6). The skill is slightly lower at a
12-month lead in the Sea of Okhotsk and a 9-month lead in
the southern Chukchi Sea. Overall, the winter skill is roughly
0.4 in the Sea of Okhotsk and 0.5 in the southern Chukchi
Sea at leads of up to 12 months. The spring (MAM) predic-
tion skill shows a similar pattern to that in winter but with
a 0.1 increase in the ACC skill. The southern Chukchi Sea
and Bering Strait have higher skills than the Bering Sea. For
summer (JJA) predictions, the prediction skill is concentrated

Figure 4. PGS for the preliminary selection of superior models in
each season.

Figure 5. Same as Fig. 4 but for RMSE.

in the Arctic basin since sea ice totally melts in the Arctic
peripheral seas. The 3-month lead prediction has the highest
skill (> 0.6) in most of the Arctic basin, while the lowest pre-
diction skill (< 0.5) is found at a 12-month lead. The autumn
(SON) prediction skill shows a similar pattern to the summer
skill but with higher correlations. In general, the model has
higher prediction skills for warm seasons, especially for au-
tumn, than that for cold seasons, while the lowest skill is in
winter.

RMSEs are consistent with correlations: high correlations
correspond to low RMSEs, and vice versa, although minor
inconsistencies occur in some seasons and regions (Fig. 7).
The RMSE is large around the Arctic basin for the warm
season and in the peripheral sea for the cold season where
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Figure 6. Cross-validated model skills measured by ACC between
SIC predictions and observation anomalies as a function of seasons
and lead months. Only the correlations that are significantly above
the 95 % confidence level based on Student’s t test are included in
the panels.

Figure 7. Same as Fig. 6 except for RMSEs. The color bar is in a
unit of percentage.

SIC has large variability. In the cold season, the RMSE is
larger in the Bering Sea than that in the Sea of Okhotsk.
The magnitudes of RMSE remain at roughly the same level
from 3- to 12-month leads in most locations for all seasons.
The marginal seas have larger RMSEs than the central Arc-
tic basin in both summer and autumn, while the error mag-
nitudes in autumn are slightly larger than those in summer
but smaller than the SIC standard deviation across the Pacific
sector (Fig. 1).

Also, the model performance is further evaluated against
anomaly persistence and climatology. Averaged over the grid
points in the model domain and over all seasons for the pe-
riod of 1980–2020, the regional Markov model’s mean cor-
relation is manifestly higher, and the mean RMSE of the re-
gional Markov model is much lower than the climatology

Figure 8. The prediction skill of the regional Markov model com-
pared against that of anomaly persistence and climatology averaged
over the model domain as a function of the number of months of
lead time.

and anomaly persistence for all the lead months, especially
from 2- to 10-month leads (Fig. 8). In addition, RMSE is
not sensitive to the lead months, showing the superiority of
the regional model. These results suggest that the regional
Markov model can capture significantly more predictability
beyond SIC anomaly persistence.

To assess the regional model skill improvements from the
pan-Arctic model presented by Yuan et al. (2016), we cal-
culated the ACC as a function of lead months (Fig. 9). Note
that the ACC is calculated only in typical regions with large
standard deviations marked in Fig. 1. The regional model ev-
idently enhances the ACC skill from the pan-Arctic model
for the 4- to 12-month lead predictions in the Bering Sea and
the 1- to 7-month lead predictions in the Sea of Okhotsk.
The mean ACC is also increased by 32 % in the Bering Sea
and by 18 % in the Sea of Okhotsk. The prediction skill of
the regional Markov model within the Arctic basin also re-
mains at the same high level as that of the pan-Arctic model
(not shown), so significant skill improvements occur in the
peripheral sea of the Pacific sector.

4 Discussion

4.1 Contribution of linear trends to SIE prediction skill

Sigmond et al. (2013) show that the linear trend in Arctic
SIE dramatically contributes to its forecast skill to CanSIPS.
Lindsay et al. (2008) show that their dynamic model pre-
diction skill is much lower when the trend is not included.
They suggested that the trend accounts for 76 % of the vari-
ance of the pan-Arctic ice extent in September. The trend also
contributes to the pan-Arctic prediction in the linear Markov
model (Yuan et al., 2016). In the Arctic, SIE has declined
at −0.35 million square kilometers per decade during 1979–
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Figure 9. Cross-validated model skills of the regional Markov
model vs. the pan-Arctic Markov model. (a) The skills are mea-
sured by the ACC between predictions and observations with trends
from 1980 to 2020 as a function of lead months in the Bering Sea.
Panel (b) is the same as (a) except for the Sea of Okhotsk. The red
numbers in the bottom left of each panel represent the mean regional
model skill improvements from the pan-Arctic model.

2020, which is significant at the 95 % confidence level. The
large SIC trend is mainly in the Barents Sea and the Kara Sea,
followed by the Chukchi Sea, while the mean SIC trend in the
Bering Sea and the Sea of Okhotsk is relatively weak (Fig. 1).
To evaluate the contribution of long-term trends to the re-
gional Markov model skill, we conducted post-prediction
analysis on the linear trends’ contribution to the predictions
skill of SIE in the Pacific-Arctic sector. We examine the time
series of SIE in all calendar and lead months calculated by
summing the Pacific-Arctic areas that have at least 15 % SIC
from observations and predictions. Monthly trends were re-
moved from the predictions and observations, respectively.
Then, the model skill is compared between the original SIE
predictions and detrended SIE predictions.

The model is skillful in predicting SIE from January to
November at a 1-month lead (Fig. 10a). The skill is particu-
larly high for summer and autumn predictions, where ACC
is higher than 0.6 from July through November even at a
12-month lead. The model skill is relatively low in May, es-
pecially at 4–8 lead months. This pattern is consistent with
the seasonal variation of the model skill for SIC prediction
presented in Fig. 6. After monthly trends are removed from
predictions and observations, respectively, the model skill is
significantly reduced for all seasons, especially for the warm
season at 6–12 lead months (Fig. 10b, c). This is consistent
with the seasonality of the observed trend (Fig. 10d), which
also peaks in late summer and early fall.

Averaging the differences in Fig. 10c over all lead times
and predicted months, the trend removal results in a mean
reduction of 0.31 from the SIE forecast skill and a 53 % re-

duction of the mean ACC. However, the model retains high
prediction skill (0.61) from January to November at 1–2 lead
months, representing a 19 % reduction by the trend removal
(Fig. 10b), which shows the model’s capability of captur-
ing sea ice internal variability. In addition, the trend is rel-
atively large in the Chukchi Sea and weak outside of the
Arctic Ocean. The model only reduces 13 % of the mean
ACC from January to November at 1–2 lead months after
the trend removal for the area outside of the Arctic Ocean.
Although linear trends contribute significantly to the model
skill, the regional Markov model’s mean correlation is man-
ifestly higher, and the mean RMSE of the regional Markov
model is much lower than the climatology and anomaly per-
sistence for all the lead months when the sea ice trend is re-
moved (Fig. 10e, f).

4.2 Comparison with the GFDL model

Yuan et al. (2016) showed that the pan-Arctic Markov model
consistently outperforms the NOAA/NCEP Climate Forecast
System (CFSv2) and CanSIPS for sea ice seasonal predic-
tions. Here the regional Markov model is compared with the
Geophysical Fluid Dynamics Laboratory Forecast-oriented
Low Ocean Resolution (GFDL-FLOR) seasonal prediction
system (Bushuk et al., 2017a) in detrended SIE forecasts.
The hindcast model skills measured by the ACC for de-
trended SIE are high from both the regional Markov model
and GFDL model from January to June at 1- to 3-month leads
in the Pacific sector (Fig. 11). The regional Markov model
skill is statistically significant at lead times ranging from 1 to
6 months for the target months of January–June in both the
Bering Sea and the Sea of Okhotsk. Below we highlight some
key differences between these two models in the Bering Sea
and the Sea of Okhotsk.

Notably, the skill from the regional Markov model is
higher than that from the GFDL seasonal prediction system
from February to June at 3- to 6-month leads in the Bering
Sea and from December to June at 1- to 8-month leads in the
Sea of Okhotsk. In other words, the regional Markov model
performs better in spring prediction using winter observa-
tions for the Bering Sea and autumn observations for the
Sea of Okhotsk. Nevertheless, the regional Markov model
slightly underperforms the GFDL seasonal prediction sys-
tem in predictions from November to December using the
previous winter and spring observations for the Bering Sea
and using the previous winter observations for the Sea of
Okhotsk. Overall, the regional Markov model delivers skill-
ful SIE predictions in seasonal ice zones of the Pacific sector
up to 7-month lead times, an improvement from the 3-month
leads displayed in the GFDL seasonal prediction system.
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Figure 10. (a) The SIE forecast skill of the regional Markov model as a function of the calendar month and lead months. (b) The SIE
forecast skill when monthly trends are removed from the predictions and observations, respectively. The black dots in (a) and (b) represent
the correlations that are significantly above the 95 % confidence level. (c) Difference between (a) and (b). The black dots in (c) indicate that
the correlation differences are significant above the 95 % confidence level. (d) Observed trends in SIE as a function of the calendar month.
All monthly SIE trends are significantly above the 95 % confidence level. (e, f) The prediction skill of the regional Markov model compared
against that of anomaly persistence and climatology averaged over the model domain as a function of the number of months of lead time.

4.3 Sensitivity of model domain in the prediction skill

We conducted a sensitivity analysis of the model domain in
the prediction skill in the Bering Sea and the Sea of Okhotsk
with the same model configuration and different sizes of the
model domain. The model domain is defined by 90 to 270,
120 to 240, and 135 to 225◦ E, respectively. The results show
that the prediction skill patterns based on three model do-
mains show high similarity in the Bering Sea and the skill
based on the model domain (120 to 240◦ E) is highest at
all month leads. The prediction skill in the Sea of Okhotsk
based on the model domain (135 to 225◦ E) is highlighted at
5- to 8-month leads, but is poor at 11- to 12-month leads. Al-
though the models with different sizes of model domain have
different prediction skills in the Bering Sea and the Sea of
Okhotsk, the differences are not significant because all those
model domains contain highly similar signals of climate vari-

ability. Therefore, the regional model is not highly sensitive
to the size of the model domain within the Pacific-Arctic sec-
tor.

5 Conclusions

Here, we developed a regional Markov model to predict SIC
in the Pacific-Arctic sector at the seasonal timescale. The
model was constructed in the MEOF space so that it can
capture the covariability of the North Pacific climate system
defined by nine variables (SIC, OHC, SIT, SST, SAT, sur-
face net radiative flux, surface net turbulent heat flux, and
GPH and winds at 850 hPa). Based on cross-validation ex-
periments, we selected model variables and mode truncations
that provided the best results in each season. These model
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Figure 11. (a, b) Hindcast model skill (ACC) for detrended regional
SIE forecasts from 1982 to 2020 for the regional Markov model. (c,
d) Same as (a, b) except for the GFDL seasonal prediction sys-
tem. Panels (e, f) show the skill difference between these two mod-
els. The black dots in (a)–(d) represent ACCs that are significantly
above the 95 % confidence level, and the circles in (a)–(d) indi-
cate months in which the model’s skill exceeds that of a persistence
forecast. The black dots in (e)–(f) represent ACC differences that
are significant above the 95 % confidence level.

configurations were V9M16 for winter, V11M20 for spring,
V5M10 for summer, and V5M7 for autumn.

The SIC prediction skill was evaluated at each grid cell
and for all seasons using ACC. The regional Markov model’s
skill is superior to the skill derived from anomaly persistence,
revealing the model’s ability to capture more predictable SIC
internal variability than anomaly persistence. The winter skill
is about 0.4 in the Sea of Okhotsk and 0.5 in the northern
Bering Sea at leads of up to 12 months. The spring predic-
tion shows a similar pattern but with a 0.1 increase in the
ACC skill. The model skill in summer and autumn is more
than 0.6 within the Arctic basin. Compared with the pan-
Arctic seasonal prediction model, the regional Markov model
distinctly improves the SIC prediction skill in the periph-
eral seas of the Pacific-Arctic sector. The regional model sig-
nificantly enhances the correlation skill from the pan-Arctic
model for 4- to 12-month lead predictions in the Bering Sea
and 1- to 7-month lead predictions in the Sea of Okhotsk. The

Figure 12. Cross-validated model skills of the regional Markov
model with the same model configuration and different sizes of
the model domain. (a) The skills are measured by the ACC be-
tween predictions and observations with trends from 1980 to 2020
as a function of lead months in the Bering Sea. Panel (b) is the
same as (a) except for the Sea of Okhotsk. The model is config-
ured by V9M16 in winter, V11M20 in spring, V5M10 in summer,
and V5M7 in autumn. The ACC values are averaged over the area
marked in the black box in Fig. 1.

improvement is a 32 % ACC increase in the Bering Sea and
18 % in the Sea of Okhotsk. In addition, similar to the pan-
Arctic Markov model, the regional model is not sensitive to
the number of MEOF modes retained, which indicates that
the performance of this Markov model is robust.

The model retains prediction skill whether the sea ice
trend is removed or not. However, the detrended skill is no-
tably lower, consistent with earlier sea ice prediction studies.
When sea ice time series includes the trend, the model can
skillfully predict SIE from January to November. The skill is
particularly high for the predictions of summer and autumn
sea ice at longer lead times, especially in July to Novem-
ber when the skill is > 0.6 even at a 12-month lead. Con-
versely, in May, the model skill is relatively low, especially
at 4–8 lead months. Trend removal from predictions and ob-
servations results in a 53 % reduction of the mean ACC for
the entire Pacific-Arctic sector. However, the model only re-
duces 13 % of the mean ACC from January to November at
1–2 lead months after the trend removal in the Bering Sea
and the Sea of Okhotsk. This detrended analysis shows the
model’s capability of capturing sea ice internal variability be-
yond linear trends. Furthermore, the regional Markov model
improves the detrended SIE prediction skill in the Pacific-
Arctic sector to 7-month lead times from the 3-month lead
skill displayed in the GFDL-FLOR seasonal prediction sys-
tem.

The following reasons contribute to the improvements.
First, the dominant climate variability in the northern middle-
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to-high latitudes mostly occurs in the Atlantic sector of the
Arctic and Subarctic, which dictates the leading MEOF mode
in the pan-Arctic model. The unique characteristics of the
coupled atmosphere–ocean–sea ice relationships in the Pa-
cific sector may not be included in the leading MEOF de-
compositions of the pan-Arctic climate system and thus are
not correctly represented in the model. The regional model
focuses on the Pacific-Arctic coupled atmosphere–ocean–sea
ice system and captures the dominant regional climate vari-
ability. Second, the Pacific sector of the Arctic needs a dif-
ferent set of variables to maximize the model’s predictabil-
ity. We added OHC and SIT in the regional model, which
provides a crucial source of predictability in winter and sum-
mer months, respectively. We also include 850 hPa GPH and
winds to represent dynamic atmospheric processes in winter
and include turbulent heat flux to improve the model skill in
spring. Finally, we constructed a superior model for each sea-
son, isolating the seasonally dominant processes separately.

It was also found that more modes were needed in the cold
season to capture the predictable signal of SIC. This suggests
that sea ice in cold seasons has more variability patterns com-
pared with that in warm seasons, which may bring more er-
rors in prediction. SIC trends are strongest in the warm sea-
son months, which may contribute to the smaller number of
modes required. In addition to the climate system in the Arc-
tic Basin, the coupled atmosphere–ocean–sea ice variability
in the North Pacific plays a more important role in the cold
season and needs more modes to capture the covariability
signals.
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