Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-1031-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1031-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
Carlo De Michele
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
Related authors
Kai Kornuber, Emanuele Bevacqua, Mariana Madruga de Brito, Wiebke S. Jäger, Pauline Rivoire, Cassandra D. W. Rogers, Fabiola Banfi, Fulden Batibeniz, James Carruthers, Carlo de Michele, Silvia de Angeli, Cristina Deidda, Marleen C. de Ruiter, Andreas H. Fink, Henrique M. D. Goulart, Katharina Küpfer, Patrick Ludwig, Douglas Maraun, Gabriele Messori, Shruti Nath, Fiachra O’Loughlin, Joaquim G. Pinto, Benjamin Poschlod, Alexandre M. Ramos, Colin Raymond, Andreia F. S. Ribeiro, Deepti Singh, Laura Suarez Gutierrez, Philip J. Ward, and Christopher J. White
EGUsphere, https://doi.org/10.5194/egusphere-2025-4683, https://doi.org/10.5194/egusphere-2025-4683, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Impacts from extreme weather events are becoming increasingly severe under global warming, in particular when events occur simultaneously or successively. While these complex event combinations are often difficult to analyse as impact data, early warning schemes or modelling frameworks might not be fit for purpose. In this perspective we reflect on the usability of compound event research to bridge the gap between academic research and real-world applications, by formulating a set of guidelines.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Fabiola Banfi and Carlo De Michele
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-357, https://doi.org/10.5194/tc-2020-357, 2021
Manuscript not accepted for further review
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modeling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between May and September, since higher temperatures protect snow from erosion. We also compared modeled and observed firn density obtaining a satisfying agreement.
Kai Kornuber, Emanuele Bevacqua, Mariana Madruga de Brito, Wiebke S. Jäger, Pauline Rivoire, Cassandra D. W. Rogers, Fabiola Banfi, Fulden Batibeniz, James Carruthers, Carlo de Michele, Silvia de Angeli, Cristina Deidda, Marleen C. de Ruiter, Andreas H. Fink, Henrique M. D. Goulart, Katharina Küpfer, Patrick Ludwig, Douglas Maraun, Gabriele Messori, Shruti Nath, Fiachra O’Loughlin, Joaquim G. Pinto, Benjamin Poschlod, Alexandre M. Ramos, Colin Raymond, Andreia F. S. Ribeiro, Deepti Singh, Laura Suarez Gutierrez, Philip J. Ward, and Christopher J. White
EGUsphere, https://doi.org/10.5194/egusphere-2025-4683, https://doi.org/10.5194/egusphere-2025-4683, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Impacts from extreme weather events are becoming increasingly severe under global warming, in particular when events occur simultaneously or successively. While these complex event combinations are often difficult to analyse as impact data, early warning schemes or modelling frameworks might not be fit for purpose. In this perspective we reflect on the usability of compound event research to bridge the gap between academic research and real-world applications, by formulating a set of guidelines.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
F. Ioli, E. Bruno, D. Calzolari, M. Galbiati, A. Mannocchi, P. Manzoni, M. Martini, A. Bianchi, A. Cina, C. De Michele, and L. Pinto
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 137–144, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-137-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-137-2023, 2023
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022, https://doi.org/10.5194/hess-26-2093-2022, 2022
Short summary
Short summary
Rainfall estimates are usually obtained from rain gauges, weather radars, or satellites. An alternative is the measurement of the signal loss induced by rainfall on commercial microwave links (CMLs). In this work, we assess the hydrologic response of Lambro Basin when CML-retrieved rainfall is used as model input. CML estimates agree with rain gauge data. CML-driven discharge simulations show performance comparable to that from rain gauges if a CML-based calibration of the model is undertaken.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Marco Bongio, Ali Nadir Arslan, Cemal Melih Tanis, and Carlo De Michele
The Cryosphere, 15, 369–387, https://doi.org/10.5194/tc-15-369-2021, https://doi.org/10.5194/tc-15-369-2021, 2021
Short summary
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.
Fabiola Banfi and Carlo De Michele
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-357, https://doi.org/10.5194/tc-2020-357, 2021
Manuscript not accepted for further review
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modeling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between May and September, since higher temperatures protect snow from erosion. We also compared modeled and observed firn density obtaining a satisfying agreement.
Cited articles
Adhikary, S. P.: Inaugural address, in: Snow and glacier hydrology, edited by:
Young, G. J., International Association of Hydrological Sciences
(IAHS), Wallingford, Oxfordshire OX10 8BB, UK, ISBN 0-947571-83-3, 1993. a
Aizen, V. B., Aizen, E. M., and Melack, J. M.: Precipitation, melt and runoff
in the northern Tien Shan, J. Hydrol., 186, 229–251,
https://doi.org/10.1016/S0022-1694(96)03022-3, 1996. a
Alean, J., Haeberli, W., and Schädler, B.: Snow accumulation, firn
temperature and solar radiation in the area of the Colle Gnifetti core
drilling site (Monte Rosa, Swiss Alps): distribution patterns and
interrelationships, Zeitschrift für Gletscherkunde und Glazialgeologie, 19,
131–147, 1983. a, b, c, d
Alley, R. B.: Firn densification by grain-boundary sliding: a first model, J.
Phys. Colloques, 48, C1-249–C1-256, https://doi.org/10.1051/jphyscol:1987135, 1987. a
Alpert, P.: Mesoscale Indexing of the Distribution of Orographic Precipitation
over High Mountains, J. Clim. Appl. Meteor., 25, 532–545,
https://doi.org/10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2, 1986. a
Anderson, E. A.: A point energy and mass balance model of a snow cover,
vol. 19, NOAA Technical Report NWS, 19, United States, National Weather Service, https://repository.library.noaa.gov/view/noaa/6392 (last access: 2 March 2022), 1976. a
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the
densification of snow/firn and ice in the upper part of polar ice sheets, in:
Physics of ice core records, edited by: Hondoh, T., Hokkaido
University Press, Sapporo, Japan, pp. 285–305, http://hdl.handle.net/2115/32472 (last access: 2 March 2022), 2000. a, b, c, d, e, f, g, h, i, j, k
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.:
In situ measurements of Antarctic snow compaction compared with predictions
of models, J. Geophys. Res.-Earth, 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. a
Arzt, E.: The influence of an increasing particle coordination on the
densification of spherical powders, Acta Metall. Mater., 30, 1883–1890,
https://doi.org/10.1016/0001-6160(82)90028-1, 1982. a
Arzt, E., Ashby, M. F., and Easterling, K. E.: Practical applications of
hotisostatic pressing diagrams: four case studies, Metall. Mater. Trans. A,
14, 211–221, https://doi.org/10.1007/BF02651618, 1983. a
Avanzi, F., De Michele, C., Ghezzi, A., Jommi, C., and Pepe, M.: A processing-
modeling routine to use SNOTEL hourly data in snowpack dynamic models, Adv.
Water Resour., 73, 16–29, https://doi.org/10.1016/j.advwatres.2014.06.011, 2014. a, b, c, d
Bader, H.: Sorge's Law of densification of snow on high polar glaciers, J.
Glaciol., 2, 319–323, https://doi.org/10.3189/S0022143000025144, 1954. a
Bainov, D. and Simeonov, P.: Impulsive differential equations: periodic
solutions and applications, 1st edn., vol. 66, Longman, England, ISBN 978-0582096394, 1993. a
Benn, D. I. and Evans, D. J. A.: Glaciers and glaciation, second edn.,
Hodder Education, London, ISBN 9780340905791, 2010. a
Bohleber, P., Wagenbach, D., Schöner, W., and Böhm, R.: To what extent do
water isotope records from low accumulation Alpine ice cores reproduce
instrumental temperature series?, Tellus B, 65, 20148,
https://doi.org/10.3402/tellusb.v65i0.20148, 2013. a
Bohleber, P., Erhardt, T., Spaulding, N., Hoffmann, H., Fischer, H., and Mayewski, P.: Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium, Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, 2018. a, b
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012. a
Colbeck, S.: A theory of water percolation in snow, J. Glaciol., 11,
369–385, https://doi.org/10.3189/S0022143000022346, 1972. a
Déry, S. J. and Taylor, P. A.: Some aspects of the interaction of blowing
snow with the atmospheric boundary layer, Hydrol. Process., 10, 1345–1358,
https://doi.org/10.1002/(SICI)1099-1085(199610)10:10<1345::AID-HYP465>3.0.CO;2-2, 1996. a, b
DeWalle, D. R. and Rango, A.: Principles of snow hydrology, Cambridge
University Press, New York, https://doi.org/10.1017/CBO9780511535673, 2008. a, b
Domine, F., Taillandier, A.-S., and Simpson, W. R.: A parameterization of the
specific surface area of seasonal snow for field use and for models of
snowpack evolution, J. Geophys. Res.-Earth, 112, F02031, https://doi.org/10.1029/2006JF000512,
2007. a, b
Doyle, S. H., Hubbard, A., Van De Wal, R. S., Box, J. E., Van As, D., Scharrer,
K., Meierbachtol, T. W., Smeets, P. C., Harper, J. T., and Johansson, E.:
Amplified melt and flow of the Greenland ice sheet driven by late-summer
cyclonic rainfall, Nat. Geosci., 8, 647–653, https://doi.org/10.1038/ngeo2482, 2015. a
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resour. Res., 28,
1015–1031, https://doi.org/10.1029/91WR02985, 1992. a
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution
approach for effective and efficient global minimization, J. Optimiz.
Theory App., 76, 501–521, https://doi.org/10.1007/BF00939380, 1993. a
Eichler, A., Schwikowski, M., Gäggeler, H. W., Furrer, V., Synal, H.-A.,
Beer, J., Saurer, M., and Funk, M.: Glaciochemical dating of an ice core from
upper Grenzgletscher (4200 m a.s.l.), J. Glaciol., 46, 507–515,
https://doi.org/10.3189/172756500781833098, 2000. a
Fountain, A. G. and Tangborn, W. V.: The Effect of Glaciers on Streamflow
Variations, Water Resour. Res., 21, 579–586, https://doi.org/10.1029/WR021i004p00579,
1985. a
Gäggeler, H., von Gunten, H. R., Rössler, E., Oeschger, H., and Schotterer,
U.: 210Pb dating of Cold Alpine Firn/Ice Cores From Colle Gnifetti,
Switzerland, J. Glaciol., 29, 165–177, https://doi.org/10.3189/S0022143000005220, 1983. a, b, c
Haeberli, W. and Alean, J.: Temperature and accumulation of high altitude firn
in the Alps, Ann. Glaciol., 6, 161–163, https://doi.org/10.3189/1985AoG6-1-161-163,
1985. a, b
Haeberli, W. and Funk, M.: Borehole temperatures at the Colle Gnifetti
core-drilling site (Monte Rosa, Swiss Alps), J. Glaciol., 37, 37–46,
https://doi.org/10.3189/S0022143000042775, 1991. a
Hagg, W., Braun, L. N., Kuhn, M., and Nesgaard, T. I.: Modelling of
hydrological response to climate change in glacierized Central Asian
catchments, J. Hydrol., 332, 40–53, https://doi.org/10.1016/j.jhydrol.2006.06.021,
2007. a
He, S. and Ohara, N.: A New Formula for Estimating the Threshold Wind Speed for
Snow Movement, J. Adv. Model. Earth Sy., 9, 2514–2525,
https://doi.org/10.1002/2017MS000982, 2017. a, b, c
Henn, B., Raleigh, M. S., Fisher, A., and Lundquist, J. D.: A comparison of
methods for filling gaps in hourly near-surface air temperature data, J.
Hydrometeorol., 14, 929–945, https://doi.org/10.1175/JHM-D-12-027.1, 2013. a
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282,
104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003. a
Hock, R., Jansson, P., and Braun, L. N.: Modelling the Response of Mountain Glacier Discharge to Climate Warming, in: Global Change and Mountain Regions: An Overview of Current
Knowledge,
edited by: Huber, U. M., Bugmann, H. K. M., and Reasoner, M. A., Adv.
Glob. Change Res., 23, 243–252, Springer, Dordrecht, the Netherlands, ISBN 978-1-4020-3508-1, https://doi.org/10.1007/1-4020-3508-X_25, 2005. a
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y.,
Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U.,
Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., in press, https://www.ipcc.ch/srocc/chapter/chapter-2/ (last access: 2 March 2022), 2019. a
Hosler, C. L., Jensen, D. C., and Goldshlak, L.: On the aggregation of ice
crystals to form snow, J. Meteor., 14, 415–420,
https://doi.org/10.1175/1520-0469(1957)014<0415:OTAOIC>2.0.CO;2, 1957. a
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013. a, b
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst. Sci., 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010. a, b, c
Hyndman, R. J. and Athanasopoulos, G.: Forecasting:
principles and practice, 3rd edn., OTexts: Melbourne, Australia, http://Otexts.com/fpp3 (last access: 2 March 2022), 2021. a
Jacka, T. and Jun, L.: The steady-state crystal size of deforming ice, Ann.
Glaciol., 20, 13–18, https://doi.org/10.3189/1994AoG20-1-13-18, 1994. a
Jansson, P., Hock, R., and Schneider, T.: The concept of glacier storage: a
review, J. Hydrol., 282, 116–129, https://doi.org/10.1016/S0022-1694(03)00258-0, 2003. a
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.: Spatial
variation of the rain-snow temperature threshold across the Northern
Hemisphere, Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7, 2018. a
Jost, G., Moore, R. D., Menounos, B., and Wheate, R.: Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada, Hydrol. Earth Syst. Sci., 16, 849–860, https://doi.org/10.5194/hess-16-849-2012, 2012. a, b
Keck, L.: Climate significance of stable isotope records from Alpine ice cores,
PhD thesis, Institute of Environmental Physics, Heidelberg University,
Germany, https://doi.org/10.11588/heidok.00001837, 2001. a, b, c
Kelleners, T., Chandler, D., McNamara, J. P., Gribb, M. M., and Seyfried, M.:
Modeling the water and energy balance of vegetated areas with snow
accumulation, Vadose Zone J., 8, 1013–1030, https://doi.org/10.2136/vzj2008.0183,
2009. a
Lehning, M., Doorschot, J., and Bartelt, P.: A snowdrift index based on
SNOWPACK model calculations, Ann. Glaciol., 31, 382–386,
https://doi.org/10.3189/172756400781819770, 2000. a
Li, L. and Pomeroy, J. W.: Estimates of Threshold Wind Speeds for Snow
Transport Using Meteorological Data, J. Appl. Meteorol., 36, 205–213,
https://doi.org/10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2, 1997. a
Licciulli, C., Bohleber, P., Lier, J., Gagliardini, O., Hoelzle, M., and Eisen,
O.: A full Stokes ice-flow model to assist the interpretation of
millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti,
Swiss/Italian Alps, J. Glaciol., 66, 35–48, https://doi.org/10.1017/jog.2019.82, 2020. a, b, c, d, e, f, g
Liston, G. E. and Elder, K.: A meteorological distribution system for
high-resolution terrestrial modeling (MicroMet), J. Hydrometeorol., 7,
217–234, https://doi.org/10.1175/JHM486.1, 2006. a
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S.,
and Tabler, R. D.: Simulating complex snow distributions in windy
environments using SnowTran-3D, J. Glaciol., 53, 241–256,
https://doi.org/10.3189/172756507782202865, 2007. a, b, c
Lundin, J. M., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., Ligtenberg,
S. R., Simonsen, S. B., Cummings, E., Essery, R., Leahy, W., Harris, P., Helsen M. M., and Waddington E.
D.: Firn
Model Intercomparison Experiment (FirnMICE), J. Glaciol., 63, 401–422,
https://doi.org/10.1017/jog.2016.114, 2017. a
Luo, Y., Arnold, J., Liu, S., Wang, X., and Chen, X.: Inclusion of glacier
processes for distributed hydrological modeling at basin scale with
application to a watershed in Tianshan Mountains, northwest China, J.
Hydrol., 477, 72–85, https://doi.org/10.1016/j.jhydrol.2012.11.005, 2013. a
Maeno, N. and Arakawa, M.: Adhesion shear theory of ice friction at low sliding
velocities, combined with ice sintering, J. Appl. Phys., 95, 134–139,
https://doi.org/10.1063/1.1633654, 2004. a
Mariani, I., Eichler, A., Jenk, T. M., Brönnimann, S., Auchmann, R., Leuenberger, M. C., and Schwikowski, M.: Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001, Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, 2014. a, b
Martorina, S., Olivero, A., Loglisci, N., Pelosini, R., and Paesano, G.:
Capanna Margherita – The highest meteorological station in Europe. Is it
possible to consider it as representative of synoptic weather?, in:
International Conference on Alpine Meteorology and MAP-Meeting, Brig,
Switzerland, 19–23 May 2003, https://www.researchgate.net/publication/261237335_Capanna_Margherita_-_The_highest_meteorological_station_in_Europe_Is_it_possible_to_consider_it_as_representative_of_synoptic_weather (last access: 2 March 2022), 2003. a
Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., and Lettenmaier, D. P.: Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model, Hydrol. Earth Syst. Sci., 18, 787–802, https://doi.org/10.5194/hess-18-787-2014, 2014. a, b
NOAA National Centers for Environmental Information: Global Surface Hourly [station used: ID 06717099999], NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00532/html (last access: 2 March 2022), 2001. a
Pomeroy, J. and Male, D.: Steady-state suspension of snow, J. Hydrol., 136,
275–301, https://doi.org/10.1016/0022-1694(92)90015-N, 1992. a, b, c
Pomeroy, J. W. and Gray, D. M.: Saltation of snow, Water Resour. Res., 26,
1583–1594, https://doi.org/10.1029/WR026i007p01583, 1990. a, b
Pomeroy, J. W., Gray, D. M., and Landine, P. G.: The Prairie Blowing Snow
Model: characteristics, validation, operation, J. Hydrol., 144, 165–192,
https://doi.org/10.1016/0022-1694(93)90171-5, 1993. a, b
Pomeroy, J. W., Marsh, P., and Gray, D. M.: Application of a distributed
blowing snow model to the Arctic, Hydrol. Process., 11, 1451–1464, https://doi.org/10.1002/(SICI)1099-1085(199709)11:11<1451::AID-HYP449>3.0.CO;2-Q, 1997. a
Roe, G. H.: Orographic precipitation, Annu. Rev. Earth Pl. Sc., 33, 645–671,
https://doi.org/10.1146/annurev.earth.33.092203.122541, 2005. a
Schöner, W., Auer, I., Böhm, R., Keck, L., and Wagenbach, D.:
Spatial representativity of air-temperature information from instrumental and
ice-core-based isotope records in the European Alps, Ann. Glaciol., 35,
157–161, https://doi.org/10.3189/172756402781816717, 2002. a, b
Seibert, J., Vis, M. J. P., Kohn, I., Weiler, M., and Stahl, K.: Technical note: Representing glacier geometry changes in a semi-distributed hydrological model, Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, 2018. a, b
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., and Schwikowski,
M.: Record of black carbon (rBC), bismuth, lead and others from 1741 to 2015
AD from Colle Gnifetti ice cores GC15 and GC03B (Swiss/Italian Alps),
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.894787, 2018. a, b, c
Smiraglia, C., Maggi, V., Novo, A., Rossi, G., and Johnston, P.: Preliminary
results of two ice core drillings on Monte Rosa, Colle Gnifetti and Colle del
Lys, Italian Alps, Geogr. Fis. Din. Quat., 23, 165–172, 2000. a
Stevens, C. M., Verjans, V., Lundin, J. M. D., Kahle, E. C., Horlings, A. N., Horlings, B. I., and Waddington, E. D.: The Community Firn Model (CFM) v1.0, Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020, 2020. a
Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M.: Cold
firn and ice of high-altitude glaciers in the Alps: measurements and
distribution modelling, J. Glaciol., 47, 85–96,
https://doi.org/10.3189/172756501781832566, 2001. a, b, c
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R.,
Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen,
K., and Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.012, 2013. a
Vionnet, V., Guyomarc'h, G., Lafaysse, M., Naaim-Bouvet, F., Giraud, G., and
Deliot, Y.: Operational implementation and evaluation of a blowing snow
scheme for avalanche hazard forecasting, Cold Reg. Sci. Technol., 147, 1–10,
https://doi.org/10.1016/j.coldregions.2017.12.006, 2018. a
Wagenbach, D., Münnich, K., Schotterer, U., and Oeschger, H.: The
anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps, Ann.
Glaciol., 10, 183–187, https://doi.org/10.3189/S0260305500004407, 1988. a
Wagenbach, D., Bohleber, P., and Preunkert, S.: Cold, alpine ice bodies
revisited: what may we learn from their impurity and isotope content?, Geogr.
Ann. A, 94, 245–263, https://doi.org/10.1111/j.1468-0459.2012.00461.x, 2012. a
Wilkinson, D. S. and Ashby, M. F.: Pressure sintering by power law creep, Acta
Metall. Mater., 23, 1277–1285, https://doi.org/10.1016/0001-6160(75)90136-4, 1975. a
Wortmann, M., Bolch, T., Su, B., and Krysanova, V.: An efficient representation
of glacier dynamics in a semi-distributed hydrological model to bridge
glacier and river catchment scales, J. Hydrol., 573, 136–152,
https://doi.org/10.1016/j.jhydrol.2019.03.006, 2019. a, b, c
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modelling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between April and September since higher temperatures protect snow from erosion. We also compared modelled and observed firn density, obtaining a satisfying agreement.
Climate changes require a dynamic description of glaciers in hydrological models. In this study...