Articles | Volume 15, issue 12
The Cryosphere, 15, 5281–5307, 2021
https://doi.org/10.5194/tc-15-5281-2021
The Cryosphere, 15, 5281–5307, 2021
https://doi.org/10.5194/tc-15-5281-2021
Research article
30 Nov 2021
Research article | 30 Nov 2021

Improved ELMv1-ECA simulations of zero-curtain periods and cold-season CH4 and CO2 emissions at Alaskan Arctic tundra sites

Jing Tao et al.

Related authors

Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019,https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary

Related subject area

Discipline: Frozen ground | Subject: Biogeochemistry/Biology
High nitrate variability on an Alaskan permafrost hillslope dominated by alder shrubs
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022,https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
The role of vadose zone physics in the ecohydrological response of a Tibetan meadow to freeze–thaw cycles
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020,https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils
Mukan Ji, Weidong Kong, Chao Liang, Tianqi Zhou, Hongzeng Jia, and Xiaobin Dong
The Cryosphere, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020,https://doi.org/10.5194/tc-14-3907-2020, 2020
Short summary
Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, Virginia I. Rich, and Scott R. Saleska
The Cryosphere, 13, 647–663, https://doi.org/10.5194/tc-13-647-2019,https://doi.org/10.5194/tc-13-647-2019, 2019
Short summary
Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy
Robert B. Sparkes, Melissa Maher, Jerome Blewett, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, and Bart E. van Dongen
The Cryosphere, 12, 3293–3309, https://doi.org/10.5194/tc-12-3293-2018,https://doi.org/10.5194/tc-12-3293-2018, 2018
Short summary

Cited articles

Anthony, K. M. W., Anthony, P., Grosse, G., and Chanton, J.: Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers, Nat. Geosci., 5, 419–426, 2012. 
Arndt, K. A., Oechel, W. C., Goodrich, J. P., Bailey, B. A., Kalhori, A., Hashemi, J., Sweeney, C., and Zona, D.: Sensitivity of Methane Emissions to Later Soil Freezing in Arctic Tundra Ecosystems, J. Geophys. Res.-Biogeo., 124, 2595–2609, https://doi.org/10.1029/2019JG005242, 2019. 
Belshe, E. F., Schuur, E. A. G., and Bolker, B. M.: Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle, Ecol. Lett., 16, 1307–1315, https://doi.org/10.1111/ele.12164, 2013. 
Bhanja, S. N. and Wang, J. Y.: Estimating influences of environmental drivers on soil heterotrophic respiration in the Athabasca River Basin, Canada, Environ. Pollut., 257, https://doi.org/10.1016/j.envpol.2019.113630, 2020. 
Bisht, G., Riley, W. J., Wainwright, H. M., Dafflon, B., Yuan, F., and Romanovsky, V. E.: Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0, Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, 2018. 
Download
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.