Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accumulation of legacy fallout radionuclides in cryoconite on Isfallsglaciären (Arctic Sweden) and their downstream spatial distribution
Caroline C. Clason
CORRESPONDING AUTHOR
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Will H. Blake
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Nick Selmes
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Alex Taylor
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Pascal Boeckx
Isotope Bioscience Laboratory – ISOFYS, Ghent University, Ghent,
Belgium
Jessica Kitch
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Stephanie C. Mills
School of Earth, Atmospheric and Life Sciences, University of
Wollongong, Wollongong, NSW 2522, Australia
Giovanni Baccolo
Department of Environmental and Earth Sciences, University
of Milano-Bicocca, Milan, Italy
Geoffrey E. Millward
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Related authors
Sally Rangecroft, Caroline Clason, Rosa Maria Dextre, Isabel Richter, Claire Kelly, Cecilia Turin, Claudia V. Grados-Bueno, Beatriz Fuentealba, Mirtha Camacho Hernandez, Sergio Morera Julca, John Martin, and John Adam Guy
Geosci. Commun., 7, 145–150, https://doi.org/10.5194/gc-7-145-2024, https://doi.org/10.5194/gc-7-145-2024, 2024
Short summary
Short summary
The Nuestro Rio project (2021–22) developed a digital app to collect local perspectives on water quality in the Santa River basin, Peru. Here we share four key lessons from the project, discussing the importance and challenges of engaging local participants, the use of technology for data collection, and the need to integrate local perspectives with scientific observations. This article provides insights for researchers considering developing similar technological tools for environmental issues.
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.
C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist
Hydrol. Earth Syst. Sci., 19, 2701–2715, https://doi.org/10.5194/hess-19-2701-2015, https://doi.org/10.5194/hess-19-2701-2015, 2015
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, https://doi.org/10.5194/tc-9-123-2015, 2015
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3313, https://doi.org/10.5194/egusphere-2024-3313, 2024
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the GHG budgets. Despite this, carbon flux data from forested wetlands is scarce in tropical Africa. The study presents three years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results showed a positive effect of soil temperature and soil moisture, while a quadratic relationship was observed with the water table level.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
EGUsphere, https://doi.org/10.5194/egusphere-2024-2346, https://doi.org/10.5194/egusphere-2024-2346, 2024
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gasses (GHG) since 1750 is attributed to human activity, however natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source for CO2 and N2O and a minor sink for CH4.
Sally Rangecroft, Caroline Clason, Rosa Maria Dextre, Isabel Richter, Claire Kelly, Cecilia Turin, Claudia V. Grados-Bueno, Beatriz Fuentealba, Mirtha Camacho Hernandez, Sergio Morera Julca, John Martin, and John Adam Guy
Geosci. Commun., 7, 145–150, https://doi.org/10.5194/gc-7-145-2024, https://doi.org/10.5194/gc-7-145-2024, 2024
Short summary
Short summary
The Nuestro Rio project (2021–22) developed a digital app to collect local perspectives on water quality in the Santa River basin, Peru. Here we share four key lessons from the project, discussing the importance and challenges of engaging local participants, the use of technology for data collection, and the need to integrate local perspectives with scientific observations. This article provides insights for researchers considering developing similar technological tools for environmental issues.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
EGUsphere, https://doi.org/10.5194/egusphere-2024-1357, https://doi.org/10.5194/egusphere-2024-1357, 2024
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) cumulative mass balance for all the current mountain glaciers in the Italian Dolomites. We used historical aerial imagery, drone surveys and airborne LiDAR to fill the existing gap of glaciological data for the region. We observed an alarming decline in both glaciers area and volume, with some of them showing lower losses due to local topography and debris cover feedback. We strongly encourage more specific monitoring for these small glaciers.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
EGUsphere, https://doi.org/10.5194/egusphere-2024-559, https://doi.org/10.5194/egusphere-2024-559, 2024
Short summary
Short summary
To assess the impact of groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Paula Alejandra Lamprea Pineda, Marijn Bauters, Hans Verbeeck, Selene Baez, Matti Barthel, Samuel Bodé, and Pascal Boeckx
Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, https://doi.org/10.5194/bg-18-413-2021, 2021
Short summary
Short summary
Tropical forest soils are an important source and sink of greenhouse gases (GHGs) with tropical montane forests having been poorly studied. In this pilot study, we explored soil fluxes of CO2, CH4, and N2O in an Ecuadorian neotropical montane forest, where a net consumption of N2O at higher altitudes was observed. Our results highlight the importance of short-term variations in N2O and provide arguments and insights for future, more detailed studies on GHG fluxes from montane forest soils.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Long Ho, Ruben Jerves-Cobo, Matti Barthel, Johan Six, Samuel Bode, Pascal Boeckx, and Peter Goethals
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-311, https://doi.org/10.5194/bg-2020-311, 2020
Revised manuscript not accepted
Short summary
Short summary
Rivers are being polluted by human activities, especially in urban areas. We studied the greenhouse gas (GHG) emissions from an urban river system. The results showed a clear trend between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality worsened, its contribution to global warming can go up by 10 times. Urban rivers emitted 4-times more than of the amount of GHGs compared to rivers in natural sites.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, and Paul Vallelonga
Clim. Past, 14, 601–608, https://doi.org/10.5194/cp-14-601-2018, https://doi.org/10.5194/cp-14-601-2018, 2018
Short summary
Short summary
Ice core dust size distributions are more often measured today by an Abakus laser sensor than by the more technically demanding but also very accurate Coulter counter. However, Abakus measurements consistently give larger particle sizes. We show here that this bias exists because the particles are flat and elongated. Correcting for this gives more accurate Abakus measurements. Furthermore, the shape of the particles can be extracted from a combination of Coulter counter and Abakus measurements.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Marijn Bauters, Hans Verbeeck, Miro Demol, Stijn Bruneel, Cys Taveirne, Dries Van der Heyden, Landry Cizungu, and Pascal Boeckx
Biogeosciences, 14, 5313–5321, https://doi.org/10.5194/bg-14-5313-2017, https://doi.org/10.5194/bg-14-5313-2017, 2017
Short summary
Short summary
We assessed community-weighted functional canopy traits and indicative δ15N shifts along two new altitudinal transects in the tropical forest biome of both South America and Africa. We found that the functional forest composition and δ15N response along both transects was parallel, with a species shift towards more nitrogen-conservative species at higher elevations.
Dane Dickinson, Samuel Bodé, and Pascal Boeckx
Atmos. Meas. Tech., 10, 4507–4519, https://doi.org/10.5194/amt-10-4507-2017, https://doi.org/10.5194/amt-10-4507-2017, 2017
Short summary
Short summary
Cavity ring-down spectroscopy (CRDS) is an increasingly popular technology for isotope analysis of trace gases. However, most commercial CRDS instruments are designed for continuous gas sampling and cannot reliably measure small discrete samples. We present a novel technical adaptation that allows routine analysis of 50 mL syringed samples on an isotopic-CO2 CRDS unit. Our method offers excellent accuracy and precision, fast sample throughput, and is easily implemented in other CRDS instruments.
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017, https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Short summary
In the paper, we demonstrate the potential of field and satellite hyperspectral reflectance data in characterizing the spatial distribution of impurities on the Morteratsch Glacier. In situ reflectance spectra showed that impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier. Laboratory measurements of cryoconite showed the presence of elemental and organic carbon.
Lien De Wispelaere, Samuel Bodé, Pedro Hervé-Fernández, Andreas Hemp, Dirk Verschuren, and Pascal Boeckx
Biogeosciences, 14, 73–88, https://doi.org/10.5194/bg-14-73-2017, https://doi.org/10.5194/bg-14-73-2017, 2017
Louise C. Andresen, Anna-Karin Björsne, Samuel Bodé, Leif Klemedtsson, Pascal Boeckx, and Tobias Rütting
SOIL, 2, 433–442, https://doi.org/10.5194/soil-2-433-2016, https://doi.org/10.5194/soil-2-433-2016, 2016
Short summary
Short summary
In soil the constant transport of nitrogen (N) containing compounds from soil organic matter and debris out into the soil water, is controlled by soil microbes and enzymes that literally cut down polymers (such as proteins) into single amino acids (AA), hereafter microbes consume AAs and excrete ammonium back to the soil. We developed a method for analysing N turnover and flow of organic N, based on parallel 15N tracing experiments. The numerical model gives robust and simultaneous quantification.
C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist
Hydrol. Earth Syst. Sci., 19, 2701–2715, https://doi.org/10.5194/hess-19-2701-2015, https://doi.org/10.5194/hess-19-2701-2015, 2015
L. C. Andresen, S. Bode, A. Tietema, P. Boeckx, and T. Rütting
SOIL, 1, 341–349, https://doi.org/10.5194/soil-1-341-2015, https://doi.org/10.5194/soil-1-341-2015, 2015
J. W. van Groenigen, D. Huygens, P. Boeckx, Th. W. Kuyper, I. M. Lubbers, T. Rütting, and P. M. Groffman
SOIL, 1, 235–256, https://doi.org/10.5194/soil-1-235-2015, https://doi.org/10.5194/soil-1-235-2015, 2015
S. Doetterl, J.-T. Cornelis, J. Six, S. Bodé, S. Opfergelt, P. Boeckx, and K. Van Oost
Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, https://doi.org/10.5194/bg-12-1357-2015, 2015
Short summary
Short summary
We link the mineralogy of soils affected by erosion and deposition to the distribution of soil carbon fractions, their turnover and microbial activity. We show that the weathering status of soils and their history are controlling the stabilization of carbon with minerals. After burial, aggregated C is preserved more efficiently while non-aggregated C can be released and younger C re-sequestered more easily. Weathering changes the effectiveness of stabilization mechanism limiting this C sink.
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, https://doi.org/10.5194/tc-9-123-2015, 2015
D. Xue, P. Boeckx, and Z. Wang
Biogeosciences, 11, 5957–5967, https://doi.org/10.5194/bg-11-5957-2014, https://doi.org/10.5194/bg-11-5957-2014, 2014
L. Palazón, L. Gaspar, B. Latorre, W. H. Blake, and A. Navas
Solid Earth, 5, 963–978, https://doi.org/10.5194/se-5-963-2014, https://doi.org/10.5194/se-5-963-2014, 2014
S. Cook, I. C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T. D. James
The Cryosphere, 8, 827–841, https://doi.org/10.5194/tc-8-827-2014, https://doi.org/10.5194/tc-8-827-2014, 2014
R. M. Rees, J. Augustin, G. Alberti, B. C. Ball, P. Boeckx, A. Cantarel, S. Castaldi, N. Chirinda, B. Chojnicki, M. Giebels, H. Gordon, B. Grosz, L. Horvath, R. Juszczak, Å. Kasimir Klemedtsson, L. Klemedtsson, S. Medinets, A. Machon, F. Mapanda, J. Nyamangara, J. E. Olesen, D. S. Reay, L. Sanchez, A. Sanz Cobena, K. A. Smith, A. Sowerby, M. Sommer, J. F. Soussana, M. Stenberg, C. F. E. Topp, O. van Cleemput, A. Vallejo, C. A. Watson, and M. Wuta
Biogeosciences, 10, 2671–2682, https://doi.org/10.5194/bg-10-2671-2013, https://doi.org/10.5194/bg-10-2671-2013, 2013
N. Selmes, T. Murray, and T. D. James
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-475-2013, https://doi.org/10.5194/tcd-7-475-2013, 2013
Revised manuscript has not been submitted
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1483-2013, https://doi.org/10.5194/bgd-10-1483-2013, 2013
Revised manuscript not accepted
Related subject area
Discipline: Glaciers | Subject: Glacier Hydrology
Modeling saline-fluid flow through subglacial channels
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast and Southwest Greenland
Hydrological response of Andean catchments to recent glacier mass loss
Characterizing sub-glacial hydrology using radar simulations
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
A conceptual model for glacial lake bathymetric distribution
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 1: Steady states and friction laws
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 2: A dynamic viscoelastic model
The impact of surface melt rate and catchment characteristics on Greenland Ice Sheet moulin inputs
Evaporation over a glacial lake in Antarctica
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Drainage of an ice-dammed lake through a supraglacial stream: hydraulics and thermodynamics
Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Geophysical constraints on the properties of a subglacial lake in northwest Greenland
Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls
Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard
Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period 1998–2019
An analysis of instabilities and limit cycles in glacier-dammed reservoirs
Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary
Short summary
Detailed glacial lake bathymetry surveys are essential for accurate glacial lake outburst flood (GLOF) simulation and risk assessment. We creatively developed a conceptual model for glacial lake bathymetric distribution. The basic idea is that the statistical glacial lake volume–area curves conform to a power-law relationship indicating that the idealized geometric shape of the glacial lake basin should be hemispheres or cones.
Christian Schoof
The Cryosphere, 17, 4797–4815, https://doi.org/10.5194/tc-17-4797-2023, https://doi.org/10.5194/tc-17-4797-2023, 2023
Short summary
Short summary
Computational models that seek to predict the future behaviour of ice sheets and glaciers typically rely on being able to compute the rate at which a glacier slides over its bed. In this paper, I show that the degree to which the glacier bed is
hydraulically connected(how easily water can flow along the glacier bed) plays a central role in determining how fast ice can slide.
Christian Schoof
The Cryosphere, 17, 4817–4836, https://doi.org/10.5194/tc-17-4817-2023, https://doi.org/10.5194/tc-17-4817-2023, 2023
Short summary
Short summary
The subglacial drainage of meltwater plays a major role in regulating glacier and ice sheet flow. In this paper, I construct and solve a mathematical model that describes how connections are made within the subglacial drainage system. This will aid future efforts to predict glacier response to surface melt supply.
Tim Hill and Christine F. Dow
The Cryosphere, 17, 2607–2624, https://doi.org/10.5194/tc-17-2607-2023, https://doi.org/10.5194/tc-17-2607-2023, 2023
Short summary
Short summary
Water flow across the surface of the Greenland Ice Sheet controls the rate of water flow to the glacier bed. Here, we simulate surface water flow for a small catchment on the southwestern Greenland Ice Sheet. Our simulations predict significant differences in the form of surface water flow in high and low melt years depending on the rate and intensity of surface melt. These model outputs will be important in future work assessing the impact of surface water flow on subglacial water pressure.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Fabiola Banfi and Carlo De Michele
The Cryosphere, 16, 1031–1056, https://doi.org/10.5194/tc-16-1031-2022, https://doi.org/10.5194/tc-16-1031-2022, 2022
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modelling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between April and September since higher temperatures protect snow from erosion. We also compared modelled and observed firn density, obtaining a satisfying agreement.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Chloé Scholzen, Thomas V. Schuler, and Adrien Gilbert
The Cryosphere, 15, 2719–2738, https://doi.org/10.5194/tc-15-2719-2021, https://doi.org/10.5194/tc-15-2719-2021, 2021
Short summary
Short summary
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to investigate how different processes of surface-to-bed meltwater transfer affect subglacial hydraulic conditions. The latter are important for the sliding motion of glaciers, which in some cases exhibit huge variations. Our findings indicate that the glaciers in our study area undergo substantial sliding because water is poorly evacuated from their base, with limited influence from the surface hydrology.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Christian Schoof
The Cryosphere, 14, 3175–3194, https://doi.org/10.5194/tc-14-3175-2020, https://doi.org/10.5194/tc-14-3175-2020, 2020
Short summary
Short summary
Glacier lake outburst floods are major glacial hazards in which ice-dammed reservoirs rapidly drain, often in a recurring fashion. The main flood phase typically involves a growing channel being eroded into ice by water flow. What is poorly understood is how that channel first comes into being. In this paper, I investigate how an under-ice drainage system composed of small, naturally occurring voids can turn into a channel and how this can explain the cyclical behaviour of outburst floods.
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Short summary
This paper models how water flows beneath a large Greenlandic glacier and how the structure of the drainage system it flows in changes over time. We also look at how this affects melting driven by freshwater plumes at the glacier front, as well as the implications for glacier flow and sea-level rise. We find an active drainage system and plumes exist year round, contradicting previous assumptions and suggesting more melting may not slow the glacier down, unlike at other sites in Greenland.
Camilo Rada and Christian Schoof
The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, https://doi.org/10.5194/tc-12-2609-2018, 2018
Short summary
Short summary
We analyse a large glacier borehole pressure dataset and provide a holistic view of the observations, suggesting a consistent picture of the evolution of the subglacial drainage system. Some aspects are consistent with the established understanding and others ones are not. We propose that most of the inconsistencies arise from the capacity of some areas of the bed to become hydraulically isolated. We present an adaptation of an existing drainage model that incorporates this phenomena.
Cited articles
Åhman, B. and Åhman, G.: Radiocesium in Swedish reindeer after the
Chernobyl fallout: Seasonal variations and long-term decline, Health Phys.,
66, 503–512, https://doi.org/10.1097/00004032-199405000-00002, 1994.
Åhman, B., Wright, S. M., and Howard, B. J.: Effect of origin of
radiocaesium on the transfer from fallout to reindeer meat, Sci. Total Environ., 278, 171–181, https://doi.org/10.1016/S0048-9697(01)00646-5, 2001.
Aldahan, A., Possnert, G., and Vintersved, I.: Atmospheric interactions at
northern high latitudes from weekly Be-isotopes in surface air, Appl. Radiat. Isot., 54, 345–353, https://doi.org/10.1016/S0969-8043(00)00163-9, 2001.
Appleby, P. G.: Chronostratigraphic Techniques in Recent Sediments, in:
Tracking Environmental Change Using Lake Sediments, Developments in Paleoenvironmental Research, vol. 1, edited by: Smol, J. P. and Last, W. M.,
Springer, Dordrecht, 2002.
Baccolo, G., Di Mauro, B., Massabò, D., Clemenza, M., Nastasi, M.,
Delmonte, B., Prata, M., Prati, P., Previtali, E., and Maggi, V.: Cryoconite
as a temporary sink for anthropogenic species stored in glaciers, Sci. Rep.,
7, 9623, https://doi.org/10.1038/s41598-017-10220-5, 2017.
Baccolo, G., Łokas, E., Gaca, P., Massabò, D., Ambrosini, R., Azzoni,
R.S., Clason, C., Di Mauro, B., Franzetti, A., Nastasi, M., Prata, M., Prati, P., Previtali, E., Delmonte, B., and Maggi, V.: Cryoconite: an efficient accumulator of radioactive fallout in glacial environments, The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020, 2020a.
Baccolo, G., Nastasi, M., Massabo, D., Clason, C., Di Mauro, B., Di Stefano,
E., Lokas, E., Prati, P., Previtali, E., Takeuchi, N., Delmonte, B., and Maggi, V.: Artificial and natural radionuclides in cryoconite as tracers of
supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps),
Catena, 191, 104577, https://doi.org/10.1016/j.catena.2020.104577, 2020b.
Bagshaw, E. A., Tranter, M., Fountain, A. G., Welch, K., Basagic, H. J., and
Lyons, W. B.: Do cryoconite holes have the potential to be significant
sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica?, Arct. Antarct. Alp. Res., 45, 440–457, https://doi.org/10.1657/1938-4246-45.4.440, 2013.
Baird, G. B.: On the Bedrock Geology of the Tarfala Valley: Preliminary Results of 2003 and 2004 Fieldwork, edited by: Jonsson, C., Tarfala Research
Station Annual Report 2003–2004, 04B1, Stockholm University, Stockholm, 2010.
Bizzotto, E. C., Villa, S., Vaj, C., and Vighi, M.: Comparison of glacial and
non-glacial-fed streams to evaluate the loading of persistent organic
pollutants through seasonal snow/ice melt, Chemosphere, 74, 924–930,
https://doi.org/10.1016/j.chemosphere.2008.10.013, 2009.
Bogdal, C., Schmid, P., Zennegg, M., Anselmetti, F. S., Scheringer, M., and
Hungerbühler, K.: Blast from the past: Melting glaciers as a relevant
source for persistent organic pollutants, Environ. Sci. Technol., 43, 8173–8177, https://doi.org/10.1021/es901628x, 2009.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: Thermodynamics and
atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012.
Buda, J., Łokas, E., Pietryka, M., Richter, D., Magowski, W., Iakovenko,
N. S., Porazinski, D. L., Budzik, T., Grabiec, M., Grzesiak, J., Klimaszyk, P., Gaca, P., and Zawierucha, K.: Biotope and biocenosis of cryoconite hole
ecosystems on Ecology Glacier in the maritime Antarctic, Sci. Total
Environ., 724, 138122, https://doi.org/10.1016/j.scitotenv.2020.138112, 2020.
Bunzl, K., Kracke, W., Schimmack, W., and Auerswald, K.: Migration of fallout
239+240Pu, 241Am and 137Cs in the various horizons of a forest soil under pine, J. Environ. Radioact., 28, 17–34, https://doi.org/10.1016/0265-931X(94)00066-6, 1995.
CCME – Canadian Council of Ministers of the Environment: Canadian sediment
quality guidelines for the protection of aquatic life, CCME EPC-8E, Summary
Tables, Environment Canada, Winnipeg, Canada, 1–5, 1995.
Clason, C: Geochemical analyses of cryoconite and proglacial sediments collected from Isfallsglaciaren, Arctic Sweden, in 2017, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935336, 2021.
Cook, J., Edwards, A., Takeuchi, N., and Irvine-Fynn, T.: Cryoconite: The
dark biological secret of the cryosphere, Prog. Phys. Geogr., 40, 66–111,
https://doi.org/10.1177/0309133315616574, 2016.
Dahlke, H. and Lyon, S.: Early melt season snowpack isotopic evolution in the Tarfala valley, northern Sweden, Ann. Glaciol., 54, 149–156, https://doi.org/10.3189/2013AoG62A232, 2013.
Duncan, B. N. and Bey, I.: A modeling study of the export pathways of pollution from Europe: Seasonal and interannual variations (1987–1997), J.
Geophys. Res.-Atmos., 109, D0830, https://doi.org/10.1029/2003JD004079, 2004.
Ely, J. C., Graham, C., Barr, I. D., Rea, B. R., Spagnolo, M., and Evans, J.:
Using UAV acquired photography and structure from motion techniques for
studying glacier landforms: application to the glacial flutes at Isfallsglaciären, Earth Surf. Proc. Land., 42, 877–888,
https://doi.org/10.1002/esp.4044, 2017.
Feely, H. W., Larsen, R. J., and Sanderson, C. G.: Factors that cause seasonal variations in Beryllium-7 concentrations in surface air, J. Environ. Radioact., 9, 223–249, https://doi.org/10.1016/0265-931X(89)90046-5, 1989.
Franz, T. P. and Eisenreich, S. J.: Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota, Environ. Sci.
Technol., 32, 1771–1778, https://doi.org/10.1021/es970601z, 1998.
Gäggeler, H. W., Tobler, L., Schwikowski, M., and Jenk, T. M.: Application of the radionuclide 210Pb in glaciology – an overview, J. Glaciol., 66, 447–456, https://doi.org/10.1017/jog.2020.19, 2020.
Grannas, A. M., Bogdal, C., Hageman, K. J., Halsall, C., Harner, T., Hung, H., Kallenborn, R., Klán, P., Klánová, J., MacDonald, R. W., Meyer, T., and Wania, F.: The role of the global cryosphere in the fate of
organic contaminants, Atmos. Chem. Phys., 13, 3271–3305,
https://doi.org/10.5194/acp-13-3271-2013, 2013.
Harrison, J. D., Naylor, G. P. L., and Stather, J. W.: The gastrointestinal
absorption of plutonium and americium in rats and guinea pigs after ingestion of dusts from the former nuclear weapons site at Maralinga: implications for human exposure, Sci. Total Environ., 143, 211–220,
https://doi.org/10.1016/0048-9697(94)90458-8, 1994.
Heinrich, G.: Uptake and transfer factors of 137Cs by mushrooms,
Radiat. Environ. Biophys., 31, 39–49, https://doi.org/10.1007/BF01211511, 1992.
Herbert, B. M. J., Villa, S., and Halsall, C. J.: Chemical interactions with
snow: Understanding the behavior and fate of semi-volatile organic compounds
in snow, Ecotoxicology and Environmental Safety, 63, 3–16, 2006.
Karlén, W.: Holocene Glacier and Climatic Variations, Kebnekaise Mountains, Swedish Lapland, Geogr. Ann. A, 55, 29–63,
https://doi.org/10.1080/04353676.1973.11879879, 1973.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change
and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet, Proc. Natl. Acad. Sci. USA, 111, 7964–7967,
https://doi.org/10.1073/pnas.1405397111, 2014.
Kirchner, G. and Daillant, O.: The potential of lichens as long-term biomonitors of natural and artificial radionuclides, Environ. Pollut., 120, 145–150, 2002.
Kovacheva, P., Todorov, B., and Djingova, R.: Geochemical fractionation and
bioavailability of 241Am, 60Co and 137Cs in fluvisol soil after sharp temperature variation before the growing season, Cent. Eur. Geol., 57, 153–163, https://doi.org/10.1556/CEuGeol.57.2014.2.3, 2014.
Kristersson, M., Ankarberg, E. H., Rosengren, Å., Lantz, C., and
Fogelberg, C. L.: Cesium-137 i livsmedel, Livsmedelsverket
riskhanteringsrapport 19, part 1, available at: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2017/2017-nr-19-del-1-cesium-i-livsmedel-riskhanteringsrapport.pdf (last access: 17 November 2021), 2017.
Kulan, A., Aldahan, A., Possnert, G., and Vintersved, I.: Distribution of
7Be in surface air of Europe, Atmos. Environ., 40, 3855–3868,
https://doi.org/10.1016/j.atmosenv.2006.02.030, 2006.
Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J., and Lin, Z.: Interaction
between selenium and soil organic matter and its impact on soil selenium
bioavailability: A review, Geoderma, 295, 69–79,
https://doi.org/10.1016/j.geoderma.2017.02.019, 2017.
Lindblom, G.: Fallout gamma-emitting radionuclides in air, precipitation,
and the human body up to spring 1967, Tellus, 21, 127–135,
https://doi.org/10.3402/tellusa.v21i1.10063, 1969.
Łokas, E., Bartmiński, P., Wachniew, P., Mietelski, J. W., Kawiak, T.,
and Środoń, J.: Sources and pathways of artificial radionuclides to
soils at a High Arctic site, Environ. Sci. Pollut. Res., 21, 12479–12493, https://doi.org/10.1007/s11356-014-3163-6, 2014.
Łokas, E., Zaborska, A., Kolicka, M., Różycki, M., and Zawierucha,
K.: Accumulation of atmospheric radionuclides and heavy metals in cryoconite
holes on an Arctic glacier, Chemosphere, 160, 162–172,
https://doi.org/10.1016/j.chemosphere.2016.06.051, 2016.
Łokas, E., Wachniew, P., Jodłowski, P., and Gąsiorek, M.: Airborne
radionuclides in the proglacial environment as indicators of sources and
transfers of soil material, J. Environ. Radioact., 178, 193–202,
https://doi.org/10.1016/j.jenvrad.2017.08.018, 2017.
Łokas, E., Zawierucha, K., Cwanek, A., Szufa, K., Gaca, P., Mietelski, J.
W., and Tomankiewicz, E.: The sources of high airborne radioactivity in
cryoconite holes from the Caucasus (Georgia), Sci. Rep., 8, 10802, https://doi.org/10.1038/s41598-018-29076-4, 2018.
Łokas, E., Zaborska, A., Sobota, I., Gaca, P., Milton, J. A., Kocurek, P.,
and Cwanek, A: Airborne radionuclides and heavy metals in high Arctic
terrestrial environment as the indicators of sources and transfers of
contamination, The Cryosphere, 13, 2075–2086, https://doi.org/10.5194/tc-13-2075-2019,
2019.
Macdonald, C. R., Elkin, B. T., and Tracy, B. L.: Radiocesium in caribou and
reindeer in northern Canada, Alaska and Greenland from 1958 to 2000, J.
Environ. Radioact., 93, 1–25, https://doi.org/10.1016/j.jenvrad.2006.11.003, 2007.
Macdonald, R. W., Harner, T., and Fyfe, J.: Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal
trend data, Sci. Total Environ., 342, 5–86, https://doi.org/10.1016/j.scitotenv.2004.12.059, 2005.
Malvern: A basic guide to particle characterization, Malvern Instruments
Limited, Worcestershire, UK, 24 pp., 2015.
Miner, K. R., Campbell, S., Gerbi, C., Liljedahl, A., Anderson, T., Perkins,
L. B., Bernsen, S., Gatesman, T., and Kreutz, K. J.: Organochlorine pollutants within a polythermal glacier in the interior Eastern Alaska Range, Water, 10, 1157, https://doi.org/10.3390/w10091157, 2018.
Olszewski, G., Andersson, P., Lindahl, P., and Eriksson, M.: On the distribution and inventories of radionuclides in dated sediments around the
Swedish coast, J. Environ. Radioact., 186, 142–151,
https://doi.org/10.1016/j.jenvrad.2017.09.025, 2018.
Owens, P. N., Blake, W. H., and Millward, G. E.: Extreme levels of fallout
radionuclides and other contaminants in glacial sediment (cryoconite) and
implications for downstream aquatic ecosystems, Sci. Rep., 9, 12531, https://doi.org/10.1038/s41598-019-48873-z, 2019.
Paatero, J., Jaakkola, T., and Kulmala, S.: Lichen (sp. Cladonia) as a
deposition indicator for transuranium elements investigated with the Chernobyl fallout, J. Environ. Radioact., 38, 223–247, https://doi.org/10.1016/S0265-931X(97)00024-6, 1998.
Ryken, N., Al-Barri, B., Taylor, A., Blake, W., Maenhout, P., Sleutel, S., Tack, F. M. G., Dierick, M., Bodé, S., Boeckx, P., and Verdoodt, A.:
Quantifying the spatial variation of 7Be depth distributions towards improved erosion rate estimations, Geoderma, 269, 10–18,
https://doi.org/10.1016/j.geoderma.2016.01.032, 2016.
Skuterud, L., Pedersen, Ø., Staaland, H., Røed, K. H., Salbu, B.,
Liken, A., and Hove, K.: Absorption, retention and tissue distribution of
radiocaesium in reindeer: effects of diet and radiocaesium source, Radiat.
Environ. Biophys., 43, 293–301, https://doi.org/10.1007/s00411-004-0257-4, 2004.
Skuterud, L., Ytre-Eide, M. A., Hevrøy, T. H., and Thørring, H.:
Caesium-137 in Norwegian reindeer and Sámi herders – 50 years of
studies, in: II International Conference on Radioecological Concentration
Processes: II International Conference 50 years later, Seville, Spain, p. 752, 2016.
Smith, H. G., Blake, W. H., and Taylor, A.: Modelling particle residence times in agricultural river basins using a sediment budget model and fallout
radionuclide tracers, Earth Surf. Proc. Land., 39, 1944–1959,
https://doi.org/10.1002/esp.3589, 2014.
Steinlin, C., Bogdal, C., Pavlova, P. A., Schwikowski, M., Lüthi, M. P.,
Scheringer, M., Schmid, P., and Hungerbühler, K.: Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate
Processes, Environ. Sci. Technol., 49, 14092–14100, https://doi.org/10.1021/acs.est.5b03304, 2015.
Steinnes, E. and Njåstad, O.: Use of mosses and lichens for regional
mapping of 137Cs fallout from the Chernobyl accident, J. Environ. Radioact., 21, 65–73, https://doi.org/10.1016/0265-931X(93)90026-4, 1993.
Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res.-Atmos., 111, D1130, https://doi.org/10.1029/2005JD006888, 2006.
Strålsäkerhetsmyndigheten: Cesium-137 i vildsvinskött, available
at:
https://www.stralsakerhetsmyndigheten.se/omraden/miljoovervakning/radioaktiva-amnen/kostnadsfri-matning-av-cesium-137-i-vildsvinskott/,
last access: 29 May 2020.
Sumerling, T. J.: The use of mosses as indicators of airborne radionuclides
near a major nuclear installation, Sci. Total Environ., 35, 251–265,
https://doi.org/10.1016/0048-9697(84)90007-X, 1984.
Takeuchi, N., Kohshima, S., and Seko, K.: Structure, formation, and darkening
process of albedo-reducing material (cryoconite) on a Himalayan glacier: A
granular algal mat growing on the glacier, Arct. Antarct. Alp. Res., 33, 115–122, https://doi.org/10.2307/1552211, 2001.
Taylor, A., Blake, W. H., Couldrick, L., and Keith-Roach, M. J.: Sorption
behaviour of beryllium-7 and implications for its use as a sediment tracer,
Geoderma, 187–188, 16–23, https://doi.org/10.1016/j.geoderma.2012.04.013, 2012.
Taylor, A., Keith-Roach, M. J., Iurian, A. R., Mabit, L., and Blake, W. H.:
Temporal variability of beryllium-7 fallout in southwest UK, J. Environ.
Radioact., 160, 80–86, https://doi.org/10.1016/j.jenvrad.2016.04.025, 2016.
Taylor, A., Blake, W. H., Iurian, A. R., Millward, G. E., and Mabit, L.: The
use of Be-7 as a soil and sediment tracer, in: Assessing Recent Soil Erosion
Rates through the Use of Beryllium-7 (Be-7), edited by: Mabit, W. H. and
Blake, L., Springer Nature, Switzerland, 1–12, 2019.
Tedstone, A. J., Bamber, J. L., Cook, J. M., Williamson, C. J., Fettweis, X., Hodson, A. J., and Tranter, M.: Dark ice dynamics of the south-west Greenland Ice Sheet, The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, 2017.
Terzi, L., Wotawa, G., Schoeppner, M., Kalinowski, M., Saey, P. R. J., Steinmann, P., Luan, L., and Staten, P. W.: Radioisotopes demonstrate changes
in global atmospheric circulation possibly caused by global warming, Sci. Rep., 10, 10695, https://doi.org/10.1038/s41598-020-66541-5, 2020.
Tieber, A., Lettner, H., Bossew, P., Hubmer, A., Sattler, B., and Hofmann, W.: Accumulation of anthropogenic radionuclides in cryoconites on Alpine
glaciers, J. Environ. Radioact., 100, 590–598, https://doi.org/10.1016/j.jenvrad.2009.04.008, 2009.
Van Oostdam, J., Gilman, A., Dewailly, E., Usher, P., Wheatley, B., Kuhnlein, H., Neve, S., Walker, J., Tracy, B., Feeley, M., and Kwavnick, B.: Human health implications of environmental contaminants in Arctic Canada: a review, Sci. Total Environ., 230, 1–82, https://doi.org/10.1016/S0048-9697(99)00036-4, 1999.
Vorkamp, K. and Rigét, F. F.: A review of new and current-use contaminants in the Arctic environment: Evidence of long-range transport and
indications of bioaccumulation, Chemosphere, 111, 379–395,
https://doi.org/10.1016/j.chemosphere.2014.04.019, 2014.
Wania, F. and Mackay, D.: A global distribution model for persistent organic
chemicals, Sci. Total Environ., 160–161, 211–232,
https://doi.org/10.1016/0048-9697(95)04358-8, 1995.
Wedepohl, K., H.: The composition of the continental crust, Geochim. Cosmochim. Ac., 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Weiland-Bräuer, N., Fischer, M. A., Schramm, K. W., and Schmitz, R. A.:
Polychlorinated biphenyl (PCB)-degrading potential of microbes present in a
cryoconite of Jamtalferner glacier, Front. Microbiol., 8, 1105,
https://doi.org/10.3389/fmicb.2017.01105, 2017.
Wilflinger, T., Lettner, H., Hubmer, A., Bossew, P., Sattler, B., and
Slupetzky, H.: Cryoconites from Alpine glaciers: Radionuclide accumulation
and age estimation with Pu and Cs isotopes and 210Pb, J. Environ.
Radioact., 186, 90–100, https://doi.org/10.1016/j.jenvrad.2017.06.020, 2018.
Wynants, M., Millward, G., Patrick, A., Taylor, A., Munishi, L., Mtei, K.,
Brendonck, L., Gilvear, D., Boeckx, P., Ndakidemi, P., and Blake, W. H.:
Determining tributary sources of increased sedimentation in East-African
Rift Lakes, Sci. Total Environ., 717, 137266, https://doi.org/10.1016/j.scitotenv.2020.137266, 2020.
Zawierucha, K., Buda, J., Fontaneto, D., Ambrosini, R., Franzetti, A.,
Wierzgoń, M., and Bogdziewicz, M.: Fine-scale spatial heterogeneity of
invertebrates within cryoconite holes, Aquat. Ecol., 53, 179–190,
https://doi.org/10.1007/s10452-019-09681-9, 2019.
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Our paper presents results of sample collection and subsequent geochemical analyses from the...