Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4929-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4929-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nunataks as barriers to ice flow: implications for palaeo ice sheet reconstructions
Martim Mas e Braga
CORRESPONDING AUTHOR
Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Richard Selwyn Jones
Department of Geography, Durham University, Durham, UK
School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
Jennifer C. H. Newall
Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Irina Rogozhina
Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway
Jane L. Andersen
Department of Geoscience, Aarhus University, Aarhus, Denmark
Nathaniel A. Lifton
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA
Arjen P. Stroeven
Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Donald Alexander Slater, Eleanor Johnstone, Martim Mas e Braga, Neil Fraser, Tom Cowton, and Mark Inall
EGUsphere, https://doi.org/10.5194/egusphere-2024-3934, https://doi.org/10.5194/egusphere-2024-3934, 2025
Short summary
Short summary
Glacial fjords connect ice sheets to the ocean, controlling heat delivery to glaciers, which impacts ice sheet melt, and freshwater discharge to the ocean, affecting ocean circulation. However, their dynamics are not captured in large-scale climate models. We designed a simplified, computationally efficient model – FjordRPM – which accurately captures key fjord processes. It has direct applications for improving projections of ice melt, ocean circulation and sea-level rise.
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, https://doi.org/10.5194/tc-15-459-2021, 2021
Short summary
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Lawrence A. Bird, Felicity S. McCormack, Johanna Beckmann, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 955–973, https://doi.org/10.5194/tc-19-955-2025, https://doi.org/10.5194/tc-19-955-2025, 2025
Short summary
Short summary
Vanderford Glacier is the fastest-retreating glacier in East Antarctica and may have important implications for future ice loss from the Aurora Subglacial Basin. Our ice sheet model simulations suggest that grounding line retreat is driven by sub-ice-shelf basal melting, in which warm ocean waters melt ice close to the grounding line. We show that current estimates of basal melt are likely too low, highlighting the need for improved estimates and direct measurements of basal melt in the region.
Karlijn Ploeg and Arjen P. Stroeven
The Cryosphere, 19, 347–373, https://doi.org/10.5194/tc-19-347-2025, https://doi.org/10.5194/tc-19-347-2025, 2025
Short summary
Short summary
Mapping of glacial landforms using lidar data shows that the retreating margin of the Fennoscandian Ice Sheet dammed a series of lakes in the Torneträsk Basin during deglaciation. These lakes were more extensive than previously thought and produced outburst floods. We show that sections of the Pärvie Fault, the longest glacially activated fault of Sweden, ruptured multiple times and during the existence of ice-dammed lake Torneträsk.
Donald Alexander Slater, Eleanor Johnstone, Martim Mas e Braga, Neil Fraser, Tom Cowton, and Mark Inall
EGUsphere, https://doi.org/10.5194/egusphere-2024-3934, https://doi.org/10.5194/egusphere-2024-3934, 2025
Short summary
Short summary
Glacial fjords connect ice sheets to the ocean, controlling heat delivery to glaciers, which impacts ice sheet melt, and freshwater discharge to the ocean, affecting ocean circulation. However, their dynamics are not captured in large-scale climate models. We designed a simplified, computationally efficient model – FjordRPM – which accurately captures key fjord processes. It has direct applications for improving projections of ice melt, ocean circulation and sea-level rise.
Bradley W. Goodfellow, Marc W. Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen P. Stroeven
Solid Earth, 15, 1343–1363, https://doi.org/10.5194/se-15-1343-2024, https://doi.org/10.5194/se-15-1343-2024, 2024
Short summary
Short summary
Reconstructions of past earthquakes are useful to assess earthquake hazard risk. We assess a limestone scarp exposed by earthquakes along the Sparta Fault, Greece, using 36Cl and rare-earth elements and yttrium (REE-Y). Our analyses indicate an increase in the average scarp slip rate from 0.8–0.9 mm yr-1 at 6.5–7.7 kyr ago to 1.1–1.2 mm yr-1 up to the devastating 464 BCE earthquake. REE-Y indicate clays in the fault scarp; their potential use in palaeoseismicity would benefit from further study.
Cari Rand, Richard S. Jones, Andrew N. Mackintosh, Brent Goehring, and Kat Lilly
EGUsphere, https://doi.org/10.5194/egusphere-2024-2674, https://doi.org/10.5194/egusphere-2024-2674, 2024
Short summary
Short summary
In this study, we determine how recently samples from a mountain in East Antarctica were last covered by the East Antarctic ice sheet. By examining concentrations of carbon-14 in rock samples, we determined that all but the summit of the mountain was buried under glacial ice within the last 15 thousand years. Other methods of estimating past ice thicknesses are not sensitive enough to capture ice cover this recent, so we were previously unaware that ice at this site was thicker at this time.
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, and Irina Rogozhina
Clim. Past, 20, 1559–1577, https://doi.org/10.5194/cp-20-1559-2024, https://doi.org/10.5194/cp-20-1559-2024, 2024
Short summary
Short summary
During the last glacial period, the Patagonian Ice Sheet grew along the southern Andes, leaving marks on the landscape showing its former extents and timing. We use paleoclimate and ice sheet models to replicate its glacial history. We find that errors in the model-based ice sheet are likely induced by imprecise reconstructions of air temperature due to poorly resolved Andean topography in global climate models, while a fitting regional climate history is only captured by local sediment records.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen
The Cryosphere, 18, 1517–1532, https://doi.org/10.5194/tc-18-1517-2024, https://doi.org/10.5194/tc-18-1517-2024, 2024
Short summary
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Nathaniel Lifton, Jim Wilson, and Allie Koester
Geochronology, 5, 361–375, https://doi.org/10.5194/gchron-5-361-2023, https://doi.org/10.5194/gchron-5-361-2023, 2023
Short summary
Short summary
We describe a new, fully automated extraction system for in situ 14C at PRIME Lab that incorporates more reliable components and designs than our original systems. We use a LiBO2 flux to dissolve a quartz sample in oxygen after removing contaminant 14C with a lower-temperature combustion step. Experiments with new Pt/Rh sample boats demonstrated reduced procedural blanks, and analyses of well-characterized intercomparison materials tested the effects of process variables on 14C yields.
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023, https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary
Short summary
Many steep glaciated rock walls collapsed when the Ice Age ended. How ice supports a steep rock wall until the ice decays is poorly understood. A collapsed rock wall was surveyed in the field and numerically modelled. Cosmogenic exposure dates show it collapsed and became ice-free ca. 18 ka ago. The model showed that the rock wall failed very slowly because ice was buttressing the slope. Dating other collapsed rock walls can improve understanding of how and when the last Ice Age ended.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Alexandria J. Koester and Nathaniel A. Lifton
Geochronology, 5, 21–33, https://doi.org/10.5194/gchron-5-21-2023, https://doi.org/10.5194/gchron-5-21-2023, 2023
Short summary
Short summary
In situ 14C’s short half-life (5.7 kyr) is unique among cosmogenic nuclides, making it sensitive to complex exposure and burial histories since 25 ka. Current extraction methods focus on quartz, but the ability to extract it from other minerals would expand applications. We developed MATLAB® scripts to calculate in situ 14C production rates from a broad range of mineral compositions. Results confirm O, Si, Al, and Mg as key targets but also find significant production from Na for the first time.
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022, https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Yongmei Gong and Irina Rogozhina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-500, https://doi.org/10.5194/hess-2021-500, 2021
Revised manuscript not accepted
Short summary
Short summary
The results from our snow evolution modeling of glacierized drainage basins in western Norway forced by bias-corrected, IPCC class regional climate model experiment CORDEX outputs reveal that the applicability of such forcing to directly drive local scale projections is not satisfactory. It is necessary to correct the original CORDEX datasets for bias against reference data that represent the current climate conditions of a specific area of interest for future projections.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, https://doi.org/10.5194/tc-15-459-2021, 2021
Short summary
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
Cited articles
Ackert, R. P., Barclay, D. J., Borns, H. W., Calkin, P. E., Kurz, M. D.,
Fastook, J. L., and Steig, E. J.: Measurements of past ice sheet elevations
in interior West Antarctica, Science, 286, 276–280,
https://doi.org/10.1126/science.286.5438.276, 1999. a
Ackert, R. P., Mukhopadhyay, S., Parizek, B. R., and Borns, H. W.: Ice
elevation near the West Antarctic Ice Sheet divide during the Last
Glaciation, Geophys. Res. Lett., 34, GL031412,
https://doi.org/10.1029/2007GL031412, 2007. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Åkesson, H., Morlighem, M., Nisancioglu, K. H., Svendsen, J. I., and
Mangerud, J.: Atmosphere-driven ice sheet mass loss paced by topography:
Insights from modelling the south-western Scandinavian Ice Sheet, Quaternary
Sci. Rev., 195, 32–47,
https://doi.org/10.1016/j.quascirev.2018.07.004, 2018. a
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020. a, b
Alder, J. R. and Hostetler, S. W.: Applying the Community Ice Sheet Model to
evaluate PMIP3 LGM climatologies over the North American ice sheets, Clim.
Dynam., 53, 2807–2824, https://doi.org/10.1007/s00382-019-04663-x,
2019. a
Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica, The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, 2015. a
Andersen, J. L., Newall, J. C., Blomdin, R., Sams, S. E., Fabel, D., Koester,
A. J., Lifton, N. A., Fredin, O., Caffee, M. W., Glasser, N. F., Rogozhina,
I., Suganuma, Y., Harbor, J. M., and Stroeven, A. P.: Ice surface changes
during recent glacial cycles along the Jutulstraumen and Penck Trough ice
streams in western Dronning Maud Land, East Antarctica, Quaternary Sci.
Rev., 249, 106636, https://doi.org/10.1016/j.quascirev.2020.106636, 2020. a, b, c, d
Bentley, M. J., Ó Cofaigh, C., Anderson, J. B., Conway, H., Davies, B.,
Graham, A. G., Hillenbrand, C.-D., Hodgson, D. A., Jamieson, S. S., Larter,
R. D., Mackintosh, A., Smith, J. A., Verleyen, E., Ackert, R. P., Bart,
P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta, X.,
Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W.,
Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K.,
Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L.,
Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M.,
Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y.,
Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J.,
Massé, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney,
R., Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J.,
Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C., Stolldorf, T. D.,
Sugden, D. E., van der Putten, N., van Ommen, T., Verfaillie, D.,
Vyverman, W., Wagner, B., White, D. A., Witus, A. E., and Zwartz, D.: A
community-based geological reconstruction of Antarctic Ice Sheet deglaciation
since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 1–9,
https://doi.org/10.1016/j.quascirev.2014.06.025, 2014. a
Berends, C. J., Goelzer, H., and van de Wal, R. S. W.: The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0), Geosci. Model Dev., 14, 2443–2470, https://doi.org/10.5194/gmd-14-2443-2021, 2021. a
Briggs, R. D., Pollard, D., and Tarasov, L.: A data-constrained large ensemble
analysis of Antarctic evolution since the Eemian, Quaternary Sci. Rev.,
103, 91–115, https://doi.org/10.1016/j.quascirev.2014.09.003, 2014. a
Burton-Johnson, A., Black, M., Fretwell, P. T., and Kaluza-Gilbert, J.: An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent, The Cryosphere, 10, 1665–1677, https://doi.org/10.5194/tc-10-1665-2016, 2016. a
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino, N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and Yu, H.: Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, 2020. a
Cuzzone, J. K., Schlegel, N.-J., Morlighem, M., Larour, E., Briner, J. P., Seroussi, H., and Caron, L.: The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM), The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, 2019. a, b
De Boer, B., Lourens, L. J., and Van De Wal, R. S. W.: Persistent 400,000-year
variability of Antarctic ice volume and the carbon cycle is revealed
throughout the Plio-Pleistocene, Nat. Commun., 5, 1–8,
https://doi.org/10.1038/ncomms3999, 2014. a
Durand, G., Gagliardini, O., de Fleurian, B., Zwinger, T., and Le Meur, E.:
Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J.
Geophys. Res.-Earth, 114, F03009,
https://doi.org/10.1029/2008JF001170, 2009. a
Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and le Meur, E.: Impact
of bedrock description on modeling ice sheet dynamics, Geophys. Res. Lett., 38, L20501, https://doi.org/10.1029/2011GL048892, 2011. a, b
Favier, L., Pattyn, F., Berger, S., and Drews, R.: Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica, The Cryosphere, 10, 2623–2635, https://doi.org/10.5194/tc-10-2623-2016, 2016. a
Fogwill, C. J., Turney, C. S. M., Golledge, N. R., Rood, D. H., Hippe, K.,
Wacker, L., Wieler, R., Rainsley, E. B., and Jones, R. S.: Drivers of abrupt
Holocene shifts in West Antarctic ice stream direction determined from
combined ice sheet modelling and geologic signatures, Antarct. Sci., 26,
674–686, https://doi.org/10.1017/S0954102014000613, 2014. a
Fowler, A. C. and Larson, D. A.: On the flow of polythermal glaciers – I. Model
and preliminary analysis, P. Roy. Soc. Lond. A
Mat., 363, 217–242,
https://doi.org/10.1098/rspa.1978.0165, 1978. a
Frank, T., Åkesson, H., de Fleurian, B., Morlighem, M., and Nisancioglu, K. H.: Geometric Controls of Tidewater Glacier Dynamics, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-81, in review, 2021. a
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F., and Winkelmann, R.:
Hysteresis of the Antarctic Ice Sheet, Nature, 585, 538–544,
https://doi.org/10.1038/s41586-020-2727-5, 2020. a
Gladstone, R. M., Warner, R. C., Galton-Fenzi, B. K., Gagliardini, O., Zwinger, T., and Greve, R.: Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting, The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-319-2017, 2017. a, b
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020. a
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.:
Dynamics of the last glacial maximum Antarctic ice-sheet and its response
to ocean forcing, P. Natl. Acad. Sci. USA, 109,
16052–16056, https://doi.org/10.1073/pnas.1205385109, 2012. a, b
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H.,
Cortese, G., and Levy, R. H.: Antarctic contribution to meltwater pulse 1A
from reduced Southern Ocean overturning, Nat. Commun., 5, 1–10,
https://doi.org/10.1038/ncomms6107, 2014. a
Gomez, N., Weber, M. E., Clark, P. U., Mitrovica, J. X., and Han, H. K.:
Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing,
Nature, 587, 600–604, https://doi.org/10.1038/s41586-020-2916-2, 2020. a, b
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
theory and application, Quaternary Sci. Rev., 20, 1475–1560,
https://doi.org/10.1016/S0277-3791(00)00171-2, 2001. a, b
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012. a, b
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., and Fricker, H. A.:
Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves,
Geophys. Res. Lett., 46, 13903–13909,
https://doi.org/10.1029/2019GL085027, 2019. a
Gudmundsson, H.: GHilmarG/UaSource: Ua2019b, Zenodo [code], https://doi.org/10.5281/zenodo.3706624,
2020. a, b
Hindmarsh, R. C. A.: A numerical comparison of approximations to the Stokes
equations used in ice sheet and glacier modeling, J. Geophys.
Res.-Earth, 109, F01012, https://doi.org/10.1029/2003JF000065,
2004. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019. a, b
Ito, K. and Kunisch, K.: Lagrange multiplier approach to variational problems
and applications, SIAM, Philadelphia, 2008. a
Ivins, E. R. and James, T. S.: Antarctic glacial isostatic adjustment: a new
assessment, Antarct. Sci., 17, 541–553,
https://doi.org/10.1017/S0954102005002968, 2005. a
Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. Ó., Stokes,
C., Hillenbrand, C.-D., and Dowdeswell, J. A.: Ice-stream stability on a
reverse bed slope, Nat. Geosci., 5, 799–802,
https://doi.org/10.1038/ngeo1600, 2012. a
Jamieson, S. S. R., Vieli, A., Cofaigh, C. Ó., Stokes, C. R., Livingstone,
S. J., and Hillenbrand, C.-D.: Understanding controls on rapid ice-stream
retreat during the last deglaciation of Marguerite Bay, Antarctica, using a
numerical model, J. Geophys. Res.-Earth, 119,
247–263, https://doi.org/10.1002/2013JF002934, 2014. a, b
Jarosch, A. H., Schoof, C. G., and Anslow, F. S.: Restoring mass conservation to shallow ice flow models over complex terrain, The Cryosphere, 7, 229–240, https://doi.org/10.5194/tc-7-229-2013, 2013. a
Johnson, J. S., Bentley, M. J., and Gohl, K.: First exposure ages from the
Amundsen Sea Embayment, West Antarctica: The Late Quaternary context for
recent thinning of Pine Island, Smith, and Pope Glaciers, Geology, 36,
223–226, https://doi.org/10.1130/G24207A.1, 2008. a
Johnson, J. S., Pollard, D., Whitehouse, P. L., Roberts, S. J., Rood, D. H.,
and Schaefer, J. M.: Comparing Glacial-Geological Evidence and Model
Simulations of Ice Sheet Change since the Last Glacial Period in the Amundsen
Sea Sector of Antarctica, J. Geophys. Res.-Earth,
126, e2020JF005827, https://doi.org/10.1029/2020JF005827,
2021. a, b, c
Jones, R., Whitehouse, P., Bentley, M., Small, D., and Dalton, A.: Impact of
glacial isostatic adjustment on cosmogenic surface-exposure dating,
Quaternary Sci. Rev., 212, 206–212,
https://doi.org/10.1016/j.quascirev.2019.03.012, 2019. a
Jones, R. S., Mackintosh, A. N., Norton, K. P., Golledge, N. R., Fogwill,
C. J., Kubik, P. W., Christl, M., and Greenwood, S. L.: Rapid Holocene
thinning of an East Antarctic outlet glacier driven by marine ice sheet
instability, Nat. Commun., 6, 8910,
https://doi.org/10.1038/ncomms9910, 2015. a
Jones, R. S., Norton, K. P., Mackintosh, A. N., Anderson, J. T. H., Kubik, P.,
Vockenhuber, C., Wittmann, H., Fink, D., Wilson, G. S., Golledge, N. R., and
McKay, R.: Cosmogenic nuclides constrain surface fluctuations of an East
Antarctic outlet glacier since the Pliocene, Earth Planet. Sc. Lett., 480, 75–86, https://doi.org/10.1016/j.epsl.2017.09.014, 2017. a
Jones, R. S., Whitmore, R., Mackintosh, A. N., Norton, K. P., Eaves, S. R.,
Stutz, J., and Christl, M.: Regional-scale abrupt Mid-Holocene ice sheet
thinning in the western Ross Sea, Antarctica, Geology, 49, 278–282,
https://doi.org/10.1130/G48347.1, 2020. a
Jones, R. S., Gudmundsson, G. H., Mackintosh, A. N., McCormack, F. S., and
Whitmore, R. J.: Ocean-Driven and Topography-Controlled Nonlinear Glacier
Retreat During the Holocene: Southwestern Ross Sea, Antarctica, Geophys. Res. Lett., 48, e2020GL091454,
https://doi.org/10.1029/2020GL091454, 2021. a, b
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff,
E. W.: Orbital and Millennial Antarctic Climate Variability over the Past
800,000 Years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007. a
Kawamata, M., Suganuma, Y., Doi, K., Misawa, K., Hirabayashi, M., Hattori, A.,
and Sawagaki, T.: Abrupt Holocene ice-sheet thinning along the southern Soya
Coast, Lützow-Holm Bay, East Antarctica, revealed by glacial geomorphology
and surface exposure dating, Quaternary Sci. Rev., 247, 106540,
https://doi.org/10.1016/j.quascirev.2020.106540, 2020. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B.
P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice loss
from the Greenland Ice Sheet driven by sustained glacier retreat,
Communications Earth & Environment, 1, 1–7,
https://doi.org/10.1038/s43247-020-0001-2, 2020. a
Kingslake, J., Scherer, R. P., Albrecht, T., Coenen, J., Powell, R. D., Reese,
R., Stansell, N., Tulaczyk, S., Wearing, M. G., and Whitehouse, P. L.:
Extensive retreat and re-advance of the West Antarctic Ice Sheet during the
Holocene, Nature, 558, 430–434,
https://doi.org/10.1038/s41586-018-0208-x, 2018. a
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E.,
Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., Van Den Broeke, M.,
Siggaard-Andersen, M.-L., Nuth, C., Schomacker, A., Andresen, C. S.,
Willerslev, E., and Kjær, K. H.: Spatial and temporal distribution of mass
loss from the Greenland Ice Sheet since AD 1900, Nature, 528, 396–400,
https://doi.org/10.1038/nature16183, 2015. a
Kreuzer, M., Reese, R., Huiskamp, W. N., Petri, S., Albrecht, T., Feulner, G., and Winkelmann, R.: Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain, Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, 2021. a
Lilly, K., Fink, D., Fabel, D., and Lambeck, K.: Pleistocene dynamics of the
interior East Antarctic ice sheet, Geology, 38, 703–706,
https://doi.org/10.1130/G31172x.1, 2010. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005. a
Lowry, D. P., Golledge, N. R., Bertler, N. A., Jones, R. S., McKay, R., and
Stutz, J.: Geologic controls on ice sheet sensitivity to deglacial climate
forcing in the Ross Embayment, Antarctica, Quaternary Science Advances, 1,
100002, https://doi.org/10.1016/j.qsa.2020.100002, 2020. a
Mas e Braga, M.: Model configuration files for Mas e Braga et al. (2021), “Nunataks as barriers to ice flow: implications for palaeo ice sheet reconstructions”, Zenodo [code], https://doi.org/10.5281/zenodo.5583987, 2021. a
Mas e Braga, M., Bernales, J., Prange, M., Stroeven, A. P., and Rogozhina, I.: Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c, The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, 2021. a
Miles, B. W. J., Jordan, J. R., Stokes, C. R., Jamieson, S. S. R., Gudmundsson, G. H., and Jenkins, A.: Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration, The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, 2021. a
Minchew, B. M., Meyer, C. R., Robel, A. A., Gudmundsson, G. H., and Simons, M.:
Processes controlling the downstream evolution of ice rheology in glacier
shear margins: case study on Rutford Ice Stream, West Antarctica, J.
Glaciol., 64, 583–594, https://doi.org/10.1017/jog.2018.47, 2018. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum,
J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert,
A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A.,
Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R.,
van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and
stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020. a, b, c, d
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of ice motion in
Antarctica using synthetic-aperture radar data, Remote Sensing, 4,
2753–2767, https://doi.org/10.3390/rs4092753, 2012. a, b
Niu, L., Lohmann, G., Hinck, S., Gowan, E. J., and Krebs-Kanzow, U.: The
sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during
the last glacial cycle using PMIP3 models, J. Glaciol., 65,
645–661, https://doi.org/10.1017/jog.2019.42, 2019. a
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R. S. W., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea level rise
and implications for low lying islands, coasts and communities, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, edited by
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A. ad Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., The Intergovernmental Panel on
Climate Change, available at: http://hdl.handle.net/11554/9280 (last access: 11 December 2020), 2019. a
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L.,
Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.:
Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev.,
169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017. a
Pattyn, F. and Morlighem, M.: The uncertain future of the Antarctic Ice Sheet,
Science, 367, 1331–1335, https://doi.org/10.1126/science.aaz5487, 2020. a
Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J., and
Ferraccioli, F.: Long-Term Increase in Antarctic Ice Sheet Vulnerability
Driven by Bed Topography Evolution, Geophys. Res. Lett., 47,
e2020GL090003, https://doi.org/10.1029/2020GL090003, 2020. a
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth and
collapse through the past five million years, Nature, 458, 329–332,
https://doi.org/10.1038/nature07809, 2009. a
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive
dynamic thinning on the margins of the Greenland and Antarctic ice sheets,
Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009. a
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R.: Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12, 1969–1985, https://doi.org/10.5194/tc-12-1969-2018, 2018. a
Robel, A. A., Schoof, C., and Tziperman, E.: Persistence and variability of ice-stream grounding lines on retrograde bed slopes, The Cryosphere, 10, 1883–1896, https://doi.org/10.5194/tc-10-1883-2016, 2016. a
Robel, A. A., Pegler, S. S., Catania, G., Felikson, D., and Simkins, L. M.:
Ambiguous stability of glaciers at bed peaks, J. Glaciol., in review, 2021. a
Schannwell, C., Drews, R., Ehlers, T. A., Eisen, O., Mayer, C., Malinen, M., Smith, E. C., and Eisermann, H.: Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model, The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, 2020. a
Seguinot, J., Khroulev, C., Rogozhina, I., Stroeven, A. P., and Zhang, Q.: The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the Last Glacial Maximum, The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014, 2014. a
Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M., and Kleman, J.: Numerical simulations of the Cordilleran ice sheet through the last glacial cycle, The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, 2016. a
Seroussi, H. and Morlighem, M.: Representation of basal melting at the grounding line in ice flow models, The Cryosphere, 12, 3085–3096, https://doi.org/10.5194/tc-12-3085-2018, 2018. a
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a
Siegert, M. J., Taylor, J., and Payne, A. J.: Spectral roughness of subglacial
topography and implications for former ice-sheet dynamics in East Antarctica,
Global Planet. Change, 45, 249–263,
https://doi.org/10.1016/j.gloplacha.2004.09.008, 2005. a
Spector, P., Stone, J., and Goehring, B.: Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation, The Cryosphere, 13, 3061–3075, https://doi.org/10.5194/tc-13-3061-2019, 2019. a, b
Stutz, J., Mackintosh, A., Norton, K., Whitmore, R., Baroni, C., Jamieson, S. S. R., Jones, R. S., Balco, G., Salvatore, M. C., Casale, S., Lee, J. I., Seong, Y. B., Rhee, H. H., McKay, R., Vargo, L. J., Lowry, D., Spector, P., Cristl, M., Ivy Ochs, S., Di Nicola, L., Iarossi, M., Stuart, F., and Woodruff, T.: Mid-Holocene thinning of David Glacier, Antarctica: Chronology and Controls, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2020-284, in review, 2020. a, b
Suganuma, Y., Miura, H., Zondervan, A., and Okuno, J.: East Antarctic
deglaciation and the link to global cooling during the Quaternary: Evidence
from glacial geomorphology and 10Be surface exposure dating of the Sør
Rondane Mountains, Dronning Maud Land, Quaternary Sci. Rev., 97,
102–120, https://doi.org/10.1016/j.quascirev.2014.05.007, 2014. a, b, c
Sun, S., Cornford, S. L., Liu, Y., and Moore, J. C.: Dynamic response of Antarctic ice shelves to bedrock uncertainty, The Cryosphere, 8, 1561–1576, https://doi.org/10.5194/tc-8-1561-2014, 2014. a
Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T., and Heinemann, M.:
Local insolation changes enhance Antarctic interglacials: Insights from an
800,000-year ice sheet simulation with transient climate forcing, Earth
Planet. Sc. Lett., 495, 69–78,
https://doi.org/10.1016/j.epsl.2018.05.004, 2018. a
Weertman, J.: On the Sliding of Glaciers, J. Glaciol., 3, 33–38,
https://doi.org/10.3189/S0022143000024709, 1957. a
Whitehouse, P. L., Bentley, M. J., and Le Brocq, A. M.: A deglacial model for
Antarctica: geological constraints and glaciological modelling as a basis
for a new model of Antarctic glacial isostatic adjustment, Quaternary Sci.
Rev., 32, 1–24, https://doi.org/10.1016/j.quascirev.2011.11.016,
2012. a, b
Whitehouse, P. L., Gomez, N., King, M. A., and Wiens, D. A.: Solid Earth change
and the evolution of the Antarctic Ice Sheet, Nat. Commun., 10,
1–14, https://doi.org/10.1038/s41467-018-08068-y, 2019. a
Wirbel, A. and Jarosch, A. H.: Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1), Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020, 2020. a
Wood, J.: The geomorphological characterisation of digital elevation models.,
PhD thesis, University of Leicester, Leicester,
available at: http://hdl.handle.net/2381/34503 (last access: 16 March 2021), 1996. a
Short summary
Mountains higher than the ice surface are sampled to know when the ice reached the sampled elevation, which can be used to guide numerical models. This is important to understand how much ice will be lost by ice sheets in the future. We use a simple model to understand how ice flow around mountains affects the ice surface topography and show how much this influences results from field samples. We also show that models need a finer resolution over mountainous areas to better match field samples.
Mountains higher than the ice surface are sampled to know when the ice reached the sampled...