Articles | Volume 15, issue 9
The Cryosphere, 15, 4517–4525, 2021
https://doi.org/10.5194/tc-15-4517-2021
The Cryosphere, 15, 4517–4525, 2021
https://doi.org/10.5194/tc-15-4517-2021
Research article
27 Sep 2021
Research article | 27 Sep 2021

Meltwater sources and sinks for multiyear Arctic sea ice in summer

Don Perovich et al.

Related authors

Changes in the annual sea ice freeze-thaw cycle in the Arctic Ocean from 2001 to 2018
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-137,https://doi.org/10.5194/tc-2022-137, 2022
Preprint under review for TC
Short summary
The influence of snow on sea ice as assessed from simulations of CESM2
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021,https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations
Alice K. DuVivier, Patricia DeRepentigny, Marika M. Holland, Melinda Webster, Jennifer E. Kay, and Donald Perovich
The Cryosphere, 14, 1259–1271, https://doi.org/10.5194/tc-14-1259-2020,https://doi.org/10.5194/tc-14-1259-2020, 2020
Short summary
Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket
Donald K. Perovich
The Cryosphere, 12, 2159–2165, https://doi.org/10.5194/tc-12-2159-2018,https://doi.org/10.5194/tc-12-2159-2018, 2018
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Predictability of Arctic sea ice drift in coupled climate models
Simon Felix Reifenberg and Helge Friedrich Goessling
The Cryosphere, 16, 2927–2946, https://doi.org/10.5194/tc-16-2927-2022,https://doi.org/10.5194/tc-16-2927-2022, 2022
Short summary
Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard
Agathe Serripierri, Ludovic Moreau, Pierre Boue, Jérôme Weiss, and Philippe Roux
The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022,https://doi.org/10.5194/tc-16-2527-2022, 2022
Short summary
Influences of changing sea ice and snow thicknesses on simulated Arctic winter heat fluxes
Laura L. Landrum and Marika M. Holland
The Cryosphere, 16, 1483–1495, https://doi.org/10.5194/tc-16-1483-2022,https://doi.org/10.5194/tc-16-1483-2022, 2022
Short summary
Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022,https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
A new state-dependent parameterization for the free drift of sea ice
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022,https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary

Cited articles

Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea ice-albedo climate feedback mechanism, J. Climate, 8, 240–247, 1995. 
Divine, D. V., Granskog, M. A., Hudson, S. R., Pedersen, C. A., Karlsen, T. I., Divina, S. A., Renner, A. H. H., and Gerland, S.: Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer, The Cryosphere, 9, 255–268, https://doi.org/10.5194/tc-9-255-2015, 2015. 
Divine, D. V., Pedersen, C. A., Karlsen, T. I., Aas, H. F., Granskog, M. A., Hudson, S. R., and Gerland, S.: Photogrammetric retrieval and analysis of small scale sea ice topography during summer melt, Cold Reg. Sci. Technol., 129, 77–84, https://doi.org/10.1016/j.coldregions.2016.06.006, 2016. 
Eicken, H.: Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover, Limnol. Oceanogr., 39, 682–694, 1994. 
Eicken, H., Krouse, H. R., Kadko, D., and Perovich, D. K.: Tracer studies of pathways and rates of meltwater transport through arctic summer sea ice, J. Geophys. Res., 107, 8046, https://doi.org/10.1029/2000JC000583, 2002. 
Download
Short summary
During summer, Arctic sea ice melts on its surface and bottom and lateral edges. Some of this fresh meltwater is stored on the ice surface in features called melt ponds. The rest flows into the ocean. The meltwater flowing into the upper ocean affects ice growth and melt, upper ocean properties, and ocean ecosystems. Using field measurements, we found that the summer meltwater was equal to an 80 cm thick layer; 85 % of this meltwater flowed into the ocean and 15 % was stored in melt ponds.