
The Cryosphere, 15, 4517–4525, 2021
https://doi.org/10.5194/tc-15-4517-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Meltwater sources and sinks for multiyear
Arctic sea ice in summer
Don Perovich1, Madison Smith2, Bonnie Light2, and Melinda Webster3

1Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
2Polar Science Center, University of Washington, Seattle, WA 98105, USA
3Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

Correspondence: Don Perovich (donald.k.perovich@dartmouth.edu)

Received: 7 April 2021 – Discussion started: 21 April 2021
Revised: 7 August 2021 – Accepted: 24 August 2021 – Published: 27 September 2021

Abstract. On Arctic sea ice, the melt of snow and sea
ice generate a summertime flux of fresh water to the up-
per ocean. The partitioning of this meltwater to storage in
melt ponds and deposition in the ocean has consequences
for the surface heat budget, the sea ice mass balance, and
primary productivity. Synthesizing results from the 1997–
1998 SHEBA field experiment, we calculate the sources
and sinks of meltwater produced on a multiyear floe during
summer melt. The total meltwater input to the system from
snowmelt, ice melt, and precipitation from 1 June to 9 Au-
gust was equivalent to a layer of water 80 cm thick over the
ice-covered and open ocean. A total of 85 % of this meltwater
was deposited in the ocean, and only 15 % of this meltwater
was stored in ponds. The cumulative contributions of melt-
water input to the ocean from drainage from the ice surface
and bottom melting were roughly equal.

1 Introduction

During the Arctic summer melt season, copious amounts of
relatively fresh water are produced due to snowmelt and sea
ice melt. Sources of meltwater are surface snowmelt and ice
melt, bottom melt, lateral melt, and rain. This meltwater can
be stored in surface melt ponds, be directly deposited in the
ocean, or drain from the surface to the ocean either vertically
or horizontally. The amount and the fate of this meltwater
have implications for the surface energy budget (Hudson et
al., 2013), the sea ice mass balance, the thermohaline struc-
ture of the upper ocean, and primary productivity in the ice
and ocean.

The amount of surface melt water stored in melt ponds in-
fluences the summer albedo of sea ice and consequently the
surface heat budget. Melt ponds have been studied in field ex-
periments (Perovich et al., 2002a, b; Divine et al., 2015) and
through remote sensing imagery (Rösel et al., 2012; Fetterer
and Untersteiner, 1998; Webster et al., 2015; Divine et al.,
2016; Wright et al., 2020). The morphology and evolution
of ponds have been studied using surface topology (Popovic,
2018) and fractals (Hohenegger et al., 2012). Results from
pond studies have been incorporated into models (Curry et
al., 1995; Flocco et al., 2012; Holland et al., 2012; Schröder
et al., 2014). Yet, melt ponds, from a meltwater budget per-
spective, have received little attention.

In summer, meltwater from bottom melt, lateral melt,
drainage from the surface, and rain is input to the upper
ocean, freshening and stabilizing it. This meltwater can ac-
cumulate in well-defined layers under the ice when there is
meltwater input to the upper ocean, bottom topography to
trap the meltwater, and calm conditions with little ocean mix-
ing. Under these conditions, false bottoms can form under the
sea ice (Untersteiner, 1961; Eicken, 1994; Notz et al., 2003).
These false bottoms are below the true ice bottom and are
a source of ice production during the melt season. Meltwa-
ter accumulation in leads between floes can also develop into
well-defined stable layers (Nansen, 1902; Richter-Menge et
al., 2001).

The meltwater input impacts the thermohaline structure of
the upper ocean, ecosystems, and biogeochemistry. The melt-
water layer is a barrier for heat transfer from the ocean to the
ice bottom, thus slowing bottom ablation. The upper ocean
stratification affects the distribution of microbial and faunal
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communities and the overall productivity (Gran, 1904; Mel-
nikov et al., 2002; Li et al., 2009).

The importance of the amount and disposition of meltwa-
ter in the summer sea ice cover leads directly to several ques-
tions. How much meltwater is produced? What are the rel-
ative contributions from different sources and how do they
change with time? What fraction of surface-produced melt-
water is stored in ponds? Here we address these questions by
computing a meltwater budget, from a sea ice perspective,
over the summer melt season by synthesizing results from
the SHEBA experiment (Perovich et al., 1999). Both sources
and sinks of meltwater are determined. We examine the time
series of meltwater produced through surface snowmelt and
ice melt, bottom melt, lateral melt, and rain and explore the
sinks of drainage to the ocean and storage in melt ponds.

2 Approach

We calculate the amount and distribution of meltwater
sources and sinks during the summer melt cycle of Arctic
sea ice by synthesizing results from the SHEBA program.
SHEBA was a yearlong (October 1997–October 1998) drift
experiment in the Beaufort Sea. The overarching goals of
SHEBA were to increase understanding of the ice albedo and
cloud radiation feedbacks through interdisciplinary studies
of the atmosphere, ice, and ocean and use that understanding
to improve models (Perovich et al., 1999). Here, data from
the SHEBA field experiment are used to determine contri-
butions from snowmelt, surface melt, bottom melt for both
deformed and undeformed ice, lateral melt, and rain, as well
as the volume storage in melt ponds.

This work is a synthesis of existing mass balance results
from the SHEBA drift experiment. The main SHEBA floe
was multiyear ice. The sampling area included undeformed
ice, ponded ice, young ridges, and old eroded ridges. The
average snow depth just before melt onset was 0.33 m. Dur-
ing summer there was an average of 0.64 m of surface melt
and 0.62 m of bottom melt. The data sources for the vari-
ables needed for the study are summarized in Table 1. The
underlying assumption in this study is that, by design, the
SHEBA ensemble of mass balance point measurements pro-
vides a statistically representative picture of the SHEBA floe
(Perovich et al., 2003). The region of interest for this paper is
the SHEBA measurement area of roughly 100 km2. The fo-
cus is on the period from 1 June 1998 to 9 August 1998. This
period was selected since it includes the beginning of the
melt season and was the time of maximum surface melt, pond
evolution, lateral melting, upper ocean stratification, and data
availability.

There are two steps to this study. First, the meltwa-
ter balance on the ice surface is considered. This includes
snowmelt, surface ice melt, rain, storage in melt ponds, and
drainage to the ocean. The second step examines the input of
meltwater to the ocean. This incorporates the drainage terms

Figure 1. Schematic showing sources and sinks of meltwater used
in this analysis. This includes the sources of rain (R), snowmelt
(Ms), surface ice melt (Mi), bottom ice melt (Mb), and lateral melt
(Ml). It also has the sinks of horizontal drainage (Dh), vertical
drainage (Dv), and storage in ponds (Pv).

as sinks in the surface meltwater budget, plus lateral and bot-
tom ice melt. In this component, contributions from the ice
to the ocean are scaled by the ice concentration. The bud-
gets are calculated in terms of an equivalent meltwater layer
thickness. Figure 1 is a schematic visualizing the sources and
sinks of meltwater during the melt season.

2.1 Ice surface meltwater balance

There are four sources of meltwater on the surface of the
ice: snowmelt (Ms), surface ice melt (Mi), rain (R), and
condensation. Condensation is small compared to the other
terms and is not considered in this study. There are four
sinks for meltwater on the sea ice surface: storage in ponds
(Pv), drainage vertically through the ice to the ocean (Dv),
drainage horizontally from the ice to cracks and leads (Dh),
and evaporation. As was the case for condensation, evapo-
ration is small and neglected in this study. For continuity,
surface sources equal surface sinks giving

Ms(t)+Mi(t)+R(t)= Pv(t)+Dv(t)+Dh(t). (1)

These terms are expressed as a time series of an equiva-
lent layer thickness of meltwater. The meltwater produced
by snowmelt is

Ms(t)= ρsms (t), (2)

where ρs is the density of snow andms(t) is the time series of
average snowmelt rate on the floe. The meltwater produced
by surface ice melt is

Mi(t)= ρimi (t). (3)

ρi is the density of ice, andmi(t) is the time series of average
surface ice melt rate on the floe.R(t) is the time series of rain
during the summer. The meltwater stored in ponds is

Pv(t)= Pf(t)Pd(t). (4)
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Table 1. Summary of data sources for meltwater variables.

Variable Units Definition Source

ρs = 0.3 gcm−3 Snow density from SHEBA snow observations Sturm et al. (2002)

ρi = 0.9 gcm−3 Ice density measured from cores Perovich et al. (1999)

ms(t) cmd−1 Average snowmelt rate from 135 manual thickness gauges, 77 of which operated
over an entire annual cycle.

Perovich et al. (2003)

mi(t) cmd−1 Average surface ice melt rate from 135 manual thickness gauges, 77 of which oper-
ated over an entire annual cycle.

Perovich et al. (2003)

mb(t) cmd−1 Average bottom ice melt rate from 135 manual thickness gauges, 77 of which oper-
ated over an entire annual cycle.

Perovich et al. (2003)

Pf(t) None Pond area fraction averaged over a 200 m long survey line Perovich et al. (2003)

Pd(t) cm Pond depth averaged over a 200 m long survey line Perovich et al. (2003)

C(t) None Ice concentration observations from aerial photography Perovich et al. (2002)

ml(t) cmd−1 Lateral melt rate measured at one site at floe edge Perovich et al. (2003)

Hi(t) cm Ice thickness measurements made at floe edge Perovich et al. (2003)

PA(t) kmkm−2 Ratio of floe perimeter to floe area from aerial photography Perovich et al. (2002)

R(t) cm Rainfall from Atmospheric Surface Flux Group measurements Persson et al. (2002)

Pf(t) is the time series of pond fraction on the floe. Pd(t) is
the time series of the average pond depth.

The drainage terms are a challenge, as SHEBA had no di-
rect measurements of drainage. As a result, vertical and hor-
izontal drainage are combined and treated as a residual of
the other terms in Eq. (1). This treatment of the drainage
term also accounts for simultaneous vertical and horizontal
drainage, which can occur at times (Eicken et al., 2002).

2.2 Input to the upper ocean

Meltwater drainage is important when considering meltwa-
ter input to the ocean. The total meltwater input to the
ocean, Ofw(t), is a sum of the sources: horizontal and verti-
cal drainage, bottom melting, lateral melting Ml(t), and rain
falling on leads.

Ofw(t)= C(t)(Dh(t)+Dv(t))+C(t)Mb(t)

+C(t)Ml(t)+ (1−C(t))R(t) (5)

Here, terms are scaled by the ice concentration time series,
C(t), to account for meltwater contributions spread over an
area that includes both the ice and the leads. Bottom melting
is

Mb(t)= ρimb (t). (6)

mb(t) is the time series of average surface ice melt rate on
the floe. Lateral melting is expressed as

Ml(t)= ρiml(t)Hi(t)PA(t). (7)

ml(t) is the lateral melt rate, and Hi(t) is the ice thickness at
the floe edge. PA(t) is the floe perimeter per unit area of the
floe (units of kmkm−2).

3 Results

3.1 Ice surface meltwater balance

The daily meltwater input to the ice surface from snowmelt,
surface ice melt, and rain is plotted in Fig. 2. In early June,
the largest contribution comes from snowmelt reaching a
maximum of about 0.6 cmd−1. As the snow cover melts
away, the snow contribution decreases and the ice contribu-
tion begins to increase. The surface ice melt contribution in-
creases through June into July, reaching a peak of 2 cmd−1

on 20 July and rapidly decreasing afterward. It was often
foggy and misting during the summer, but the amount of pre-
cipitation during these periods was small. We included the
only two significant rainfall events: 2 cm of rain around 5–6
July and 1 cm of rain around 26–27 July.

The time series of melt pond fraction and average pond
depth is shown in Fig. 3. Pond measurements along the sur-
vey line started about 10 d after the initial melt pond forma-
tion. The pond survey on 20 June coincides with the first
pond area maximum as observed from aerial photography
(Perovich et al., 2002). The pond fraction decreased from 20
to 25 June, due to drainage. This was primarily due to ver-
tical drainage associated with high ice permeability (Eicken
et al., 2002). Afterwards, there was a steady increase in pond
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Figure 2. Time series of meltwater input from snowmelt, surface
ice melt, and rain.

Figure 3. Time series of average pond depth (Pd(t)) and pond frac-
tion (Pf(t)) along a 200 m long survey line.

fraction and depth through early August, reaching maximum
values of 0.37 for fraction and 39 cm for average depth.

The time series of cumulative meltwater input to the sea
ice surface and the amount stored in ponds is plotted in Fig. 4.
As before, the cumulative water input is presented as the
equivalent depth of a layer of meltwater placed on top of the
floe. Initially, the fraction of the surface meltwater stored in
ponds was 0.25. It rapidly decreased to 0.07 in only 5 d as a
result of vertical drainage and a reduction in pond coverage.
After that, the fraction stored in ponds steadily increased to a
final value of 0.23 on 8 August. Throughout the melt season,
the majority of the surface meltwater is drained into the upper
ocean rather than being stored in ponds. The time series of
the cumulative meltwater drained both horizontally and ver-
tically is the difference between the total cumulative input
and the amount stored in ponds. By 8 August, the drained
amount was equal to a 50 cm layer of meltwater on the ice
surface. There was a steady increase in the amount drained

Figure 4. Time series of the fraction of surface water input stored
in ponds (a), and cumulative surface water input, storage in ponds
(Pv), and drained to ocean (b).

from 20 June to 27 July followed by a gradual tapering to 8
August. During summer, the surface melt rates, pond depths,
and pond areas were continually changing. However, even
with all those changes, there was a consistency in drainage.
From 20 June to 23 July, there was an average increase of
1.02 cmd−1 and a standard deviation of 0.09 cmd−1. This
provided a steady influx of meltwater from the ice surface
into the ocean.

3.2 Input to the upper ocean

The time series of meltwater input to the upper ocean
(Ofw(t)) is calculated using Eq. (5). Here the meltwater in-
put represents a layer over the area covered by both the ice
and leads. Meltwater inputs from the ice are scaled by the ice
concentration to account for the total area of ice plus leads.
Helicopter-based aerial photography surveys were used to
determine the time series of ice concentration at SHEBA as
shown in Fig. 5 (Perovich et al., 2002). These surveys sam-
pled areas typically covering hundreds of square kilometers.
In mid-June, the ice concentration dropped to 0.8 and stayed
between 0.8 and 0.85 for the remainder of the period of in-
terest.
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Figure 5. Time series of ice concentration determined from aerial
photographs, C(t) (Perovich et al., 2002).

Figure 6. Time series of bottom melt rates, Mb(t) (Perovich et al.,
2003).

Rain falling on leads was a very minor component of the
meltwater input to the upper ocean. After adjusting for ice
concentration, the cumulative input was only 0.13 cm.

The contribution from surface drainage is simply the resid-
ual from Eq. (1), as shown in Fig. 4, scaled by the ice con-
centration. The average bottom melt rate (mb) is computed
using the same array of thickness gauges used to determine
surface melt rates (Perovich et al., 2003). Initially the av-
erage bottom melt rate was only about 0.2 cmd−1 (Fig. 6).
There was a gradual increase over the summer, reaching a
peak of 1.1 cmd−1 in late July after the under-ice meltwater
layer was removed by mixing caused by ice motion.

Determining the contribution from lateral melting is some-
what complicated. During SHEBA, there was only one site
where a complete time series of lateral melting was mea-
sured. We assume that this one site is representative of the en-
tire floe. Lateral melting can result in wall profiles with over-
hanging lips, shelves, and scallops (Perovich et al., 2003).

Figure 7. Time series of thickness at the ice edge, lateral melt rate
(Ml(t)), and the ratio of floe perimeter to area PA(t).

Lateral melt rates were determined by measuring the change
in wall area and applying it to a hypothetical vertical wall
generating a lateral melt rate. The ice thickness at the floe
edge was measured using a thickness gauge. The ratio of floe
perimeter to floe area was used to compare lateral melting
to surface and bottom melting. This ratio was determined
from the analysis of aerial photography where both the floe
perimeter and floe area were computed.

The time series of lateral melt rate, ice thickness, and the
ratio of floe perimeter to area are plotted in Fig. 7. There
were large changes starting on 21 July. The floe perimeter to
area ratio increased by roughly a factor of 4, while the lat-
eral melt increased from 4 to 22 cmd−1. During this period,
ice motion increased from a few cms−1 to 40 cms−1, floes
broke up, and heat stored in leads was transported to the ice
edge, enhancing lateral melting (Richter-Menge et al., 2001).
The meltwater stored in the upper few meters of the lead was
mixed downward (Richter-Menge et al., 2001).

The contributions to upper ocean meltwater input from
surface drainage, bottom melt, and lateral melt are plotted
in Fig. 8. For most of the summer, the largest contribution
was from drainage through the ice. By 9 August, though, the
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Figure 8. Upper ocean meltwater budget. Time series of fresh input
to the ocean with contributions from lateral melting, bottom melt-
ing, and surface melting. The total input is also plotted. The melt
contributions have been adjusted by the ice concentration.

contributions from surface drainage and bottom melt were
equal. The lateral melt contribution was the smallest. The cu-
mulative total meltwater input increase was well represented
(R2
= 0.997) by a second-order polynomial of the form

Ofw = 0.0099t ′2+ 0.469t ′+ 0.0396 , (8)

where t ′ is the number of days since 8 June.

4 Discussion and conclusions

From 1 June to 9 August, the total meltwater produced was
equal to a layer 80 cm thick and the input to the ocean was
equivalent to a layer 68 cm thick. This suggests that most
of the meltwater produced over the Arctic summer was de-
posited in the ocean; on 9 August, only 15 % of the meltwa-
ter produced was stored in ponds. This does not mean that on
9 August there was a 68 cm thick meltwater layer under the
ice. The meltwater could be stored under the ice, in leads,
and mixed deeper in the ocean. The fate of this meltwater
depends on multiple factors including ice–ocean interaction,
ice bottom topography, the dynamics of the ice cover, and the
horizontal and vertical partitioning of drainage.

This paper determined the amount of drainage from the
ice surface to the ocean, but it was unable to delineate be-
tween horizontal and vertical drainage. This misses an im-
portant distinction since meltwater input to leads or to the un-
derside of the ice will have different behaviors and impacts.
Horizontal transport will fill leads with meltwater, creating
a stable surface layer that can be warmed by solar heating
(Richter-Menge et al., 2001). Lateral melting also contributes
directly to freshening of leads. This results in a stable surface
layer in leads affecting ocean–ice heat transfer and ocean–
atmosphere gas exchange. Opening and closing of leads will
mix this meltwater layer, transport heat to the ice edge, and
force it under the ice. In contrast, vertical drainage can form
a meltwater layer under the ice leading to the formation of
false bottoms, isolate the ice from the ocean, and impact heat
and nutrient fluxes. Ice motion and wind forcing can mix and
dissipate this layer.

While we cannot quantitatively define the distribution of
vertical to horizontal drainage, we can make some qualita-
tive observations about the timing of when vertical vs. hori-
zontal drainage occurred. Ponds above freeboard provide hy-
drostatic head to promote vertical drainage. In early June,
most ponds were above freeboard. In mid-June, there was
rapid drainage and a decrease in pond coverage. This oc-
curred when the ice warmed, its brine volume increased, and
it became permeable enough for vertical drainage to occur
(Eicken et al., 2002). Also at this time, ponds were amor-
phous with no established horizontal drainage system to link
ponds to the floe edge (see Fig. 9).

By early August, the situation had changed. Many of the
ponds were at sea level, with no hydrostatic head. There was
an elaborate melt channel network connecting melt ponds
to each other and to the ice edge (Hohenegger et al., 2012)
(see Fig. 9). The lead fraction had increased from 0.03 to
0.18. Floes had broken, increasing the floe perimeter from
7.4 kmkm−2 (22 June) to 45.0 kmkm−2 (7 August). At this
stage, horizontal drainage increased.

It is possible to generate a rough estimate of the horizontal
to vertical drainage for a brief period. During SHEBA, verti-
cal profiles of temperature and salinity were made at a lead
site. This showed the gradual buildup of meltwater and heat
in the lead and how a dynamic ice event mixed this upper
layer and greatly enhanced lateral melting (Richter-Menge et
al., 2001). From 10 to 20 July there was a steady deepening
of the meltwater layer from 70 to 120 cm. This occurred dur-
ing a quiescent period with little winds and little ice motion.
Making a few assumptions, we use the 10 d, 50 cm increase
in the meltwater layer to estimate the fraction of surface melt-
water that is horizontally drained.

We assume that (i) the meltwater in leads only comes from
lateral melting and horizontal drainage, (ii) all lateral melt-
ing contributes to freshening of the lead, (iii) no meltwater
in the lead is lost under the ice or deeper in the ocean, and
(iv) measurements at the lead site are representative of the
broader area. Using these assumptions, the increased depth of
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Figure 9. Surface and aerial photographs of Ice Station SHEBA at different stages of pond evolution, earlier and later in the melt season.
The CCG Des Groseilliers (98 m length) is visible in the lower photographs.

the meltwater layer in the lead from 10 to 20 July is equal to
the contribution from lateral melting and horizontal drainage.
During this period, the ice concentration was 0.95, giving a
concentration-adjusted lead freshening of 2.5 cm. The contri-
bution from lateral melt during this period was 1.4 cm, giving
a contribution from horizontal drainage of 1.1 cm. Adjusted
by concentration, the surface meltwater production during
this period was 13.8 cm, with 3.7 cm being stored in ponds
and 10.1 cm drained. Thus, for this period, it is estimated that
11 % of the drainage was horizontal.

There were no measurements of the thermohaline struc-
ture of the top few meters of the upper ocean directly under
the ice during SHEBA. Future studies should include routine
profiles of temperature and salinity under the ice at multiple
locations. This would show the buildup and erosion of the
meltwater layer under the ice.

These results are from a multiyear floe in the Beaufort
Sea during the summer of 1998. Future work should ex-
plore the spatial variability of the meltwater seasonal cycle
and changes over time. Some information can be obtained
from autonomous buoys. For example, autonomous sea ice
mass balance measurements in the Beaufort Sea indicate
large increases in bottom melting in recent years (Perovich
and Richter-Menge, 2015). This has resulted in a larger melt-
water contribution from bottom melt and a larger fraction of

the meltwater production deposited in the ocean. While the
contributions from surface and bottom melt are straightfor-
ward to measure autonomously, the contributions from lat-
eral melting and the amount stored in melt ponds are more
challenging. This gap could be partially filled by sensors
measuring temperature and salinity profiles in the upper few
meters of the ocean directly beneath the ice. Aerial and satel-
lite imagery aids in extending results to larger scales.

This study was conducted on a multiyear floe. However,
more of the ice cover is first-year ice, with less snow, thin-
ner ice, and flatter topography. Future work needs to exam-
ine the impact of these changes on meltwater partitioning.
Field experiments covering the full seasonal cycle, such as
the Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) expedition (Shupe et al., 2020),
are the optimal way to determine the evolution of the sources
and sinks of meltwater on a mixture of first- and second-year
ice.

Data availability. The data used in this paper were from the
SHEBA field experiment and can be found at the Arctic Data
Center at https://doi.org/10.5065/D6H130DF (Perovich et al.,
2007) version: urn:uuid:43ff491d-5383-4cdd-9595-389c8e56cf4d
and Perovich (2017) version: urn:uuid:804d4843-4ee4-4cba-86c1-
e1969a161fb2.
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