Articles | Volume 15, issue 7
The Cryosphere, 15, 3059–3081, 2021
https://doi.org/10.5194/tc-15-3059-2021
The Cryosphere, 15, 3059–3081, 2021
https://doi.org/10.5194/tc-15-3059-2021

Research article 06 Jul 2021

Research article | 06 Jul 2021

Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks

Steven V. Kokelj et al.

Related authors

Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020,https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020,https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale
Simon Zwieback, Steven V. Kokelj, Frank Günther, Julia Boike, Guido Grosse, and Irena Hajnsek
The Cryosphere, 12, 549–564, https://doi.org/10.5194/tc-12-549-2018,https://doi.org/10.5194/tc-12-549-2018, 2018
Short summary
Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada
Cara A. Littlefair, Suzanne E. Tank, and Steven V. Kokelj
Biogeosciences, 14, 5487–5505, https://doi.org/10.5194/bg-14-5487-2017,https://doi.org/10.5194/bg-14-5487-2017, 2017
Short summary
Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar
Sergey V. Samsonov, Trevor C. Lantz, Steven V. Kokelj, and Yu Zhang
The Cryosphere, 10, 799–810, https://doi.org/10.5194/tc-10-799-2016,https://doi.org/10.5194/tc-10-799-2016, 2016
Short summary

Related subject area

Discipline: Frozen ground | Subject: Geomorphology
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner
The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021,https://doi.org/10.5194/tc-15-3555-2021, 2021
Short summary
Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021,https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021,https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria
Matthias Rode, Oliver Sass, Andreas Kellerer-Pirklbauer, Harald Schnepfleitner, and Christoph Gitschthaler
The Cryosphere, 14, 1173–1186, https://doi.org/10.5194/tc-14-1173-2020,https://doi.org/10.5194/tc-14-1173-2020, 2020
Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
Kelsey Winsor, Kate M. Swanger, Esther Babcock, Rachel D. Valletta, and James L. Dickson
The Cryosphere, 14, 1–16, https://doi.org/10.5194/tc-14-1-2020,https://doi.org/10.5194/tc-14-1-2020, 2020
Short summary

Cited articles

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., and Bowden, W. B.: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost, Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, 2015. 
Aylsworth, J. M., Duk-Rodkin, A., Robertson, T., and Traynor, J. A.: Landslides of the Mackenzie Valley and adjacent mountainous and coastal regions, in: The Physical Environment of the Mackenzie Valley: A Baseline for the Assessment of Environmental Change, edited by: Dyke, L. D. and Brooks, G. R., Geological Survey of Canada Bulletin, 547, 167–176, https://doi.org/10.4095/211888, 2000. 
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Sci. Rev. 21, 1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7, 2002. 
Balser, A. W., Jones, J. B., and Gens, R.: Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA, J. Geophys. Res.-Earth, 119, 1106–1120, https://doi.org/10.1002/2013JF002889, 2014. 
Bater, C. W. and Coops, N. C.: Evaluating error associated with lidar-derived DEM interpolation, Comput. Geosci., 35, 289–300, https://doi.org/10.1016/j.cageo.2008.09.001, 2009. 
Download
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.