Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3059-2021
https://doi.org/10.5194/tc-15-3059-2021
Research article
 | Highlight paper
 | 
06 Jul 2021
Research article | Highlight paper |  | 06 Jul 2021

Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks

Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos

Related authors

Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023,https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Allometric scaling of retrogressive thaw slumps
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023,https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020,https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020,https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale
Simon Zwieback, Steven V. Kokelj, Frank Günther, Julia Boike, Guido Grosse, and Irena Hajnsek
The Cryosphere, 12, 549–564, https://doi.org/10.5194/tc-12-549-2018,https://doi.org/10.5194/tc-12-549-2018, 2018
Short summary

Related subject area

Discipline: Frozen ground | Subject: Geomorphology
Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau
Mengzhen Li, Yanmin Yang, Zhaoyu Peng, and Gengnian Liu
The Cryosphere, 18, 1–16, https://doi.org/10.5194/tc-18-1-2024,https://doi.org/10.5194/tc-18-1-2024, 2024
Short summary
A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and InSAR-based kinematics
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-143,https://doi.org/10.5194/tc-2023-143, 2023
Revised manuscript accepted for TC
Short summary
Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023,https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Discriminating viscous creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
EGUsphere, https://doi.org/10.5194/egusphere-2023-1191,https://doi.org/10.5194/egusphere-2023-1191, 2023
Short summary
Permafrost degradation at two monitored palsa mires in north-west Finland
Mariana Verdonen, Alexander Störmer, Eliisa Lotsari, Pasi Korpelainen, Benjamin Burkhard, Alfred Colpaert, and Timo Kumpula
The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023,https://doi.org/10.5194/tc-17-1803-2023, 2023
Short summary

Cited articles

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., and Bowden, W. B.: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost, Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, 2015. 
Aylsworth, J. M., Duk-Rodkin, A., Robertson, T., and Traynor, J. A.: Landslides of the Mackenzie Valley and adjacent mountainous and coastal regions, in: The Physical Environment of the Mackenzie Valley: A Baseline for the Assessment of Environmental Change, edited by: Dyke, L. D. and Brooks, G. R., Geological Survey of Canada Bulletin, 547, 167–176, https://doi.org/10.4095/211888, 2000. 
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Sci. Rev. 21, 1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7, 2002. 
Balser, A. W., Jones, J. B., and Gens, R.: Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA, J. Geophys. Res.-Earth, 119, 1106–1120, https://doi.org/10.1002/2013JF002889, 2014. 
Bater, C. W. and Coops, N. C.: Evaluating error associated with lidar-derived DEM interpolation, Comput. Geosci., 35, 289–300, https://doi.org/10.1016/j.cageo.2008.09.001, 2009. 
Download
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.