Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2647-2021
https://doi.org/10.5194/tc-15-2647-2021
Research article
 | 
14 Jun 2021
Research article |  | 14 Jun 2021

Mechanics and dynamics of pinning points on the Shirase Coast, West Antarctica

Holly Still and Christina Hulbe

Related authors

Ultrasonic and seismic constraints on crystallographic preferred orientations of the Priestley Glacier shear margin, Antarctica
Franz Lutz, David J. Prior, Holly Still, M. Hamish Bowman, Bia Boucinhas, Lisa Craw, Sheng Fan, Daeyeong Kim, Robert Mulvaney, Rilee E. Thomas, and Christina L. Hulbe
The Cryosphere, 16, 3313–3329, https://doi.org/10.5194/tc-16-3313-2022,https://doi.org/10.5194/tc-16-3313-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Predicting ocean-induced ice-shelf melt rates using deep learning
Sebastian H. R. Rosier, Christopher Y. S. Bull, Wai L. Woo, and G. Hilmar Gudmundsson
The Cryosphere, 17, 499–518, https://doi.org/10.5194/tc-17-499-2023,https://doi.org/10.5194/tc-17-499-2023, 2023
Short summary
Glaciological history and structural evolution of the Shackleton Ice Shelf system, East Antarctica, over the past 60 years
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023,https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
An assessment of basal melt parameterisations for Antarctic ice shelves
Clara Burgard, Nicolas C. Jourdain, Ronja Reese, Adrian Jenkins, and Pierre Mathiot
The Cryosphere, 16, 4931–4975, https://doi.org/10.5194/tc-16-4931-2022,https://doi.org/10.5194/tc-16-4931-2022, 2022
Short summary
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022,https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
The effect of hydrology and crevasse wall contact on calving
Maryam Zarrinderakht, Christian Schoof, and Anthony Peirce
The Cryosphere, 16, 4491–4512, https://doi.org/10.5194/tc-16-4491-2022,https://doi.org/10.5194/tc-16-4491-2022, 2022
Short summary

Cited articles

Alley, R. B.: In search of ice-stream sticky spots, J. Glaciol., 39, 447–454, https://doi.org/10.3189/S0022143000016336, 1993. a
Anandakrishnan, S. and Alley, R. B.: Ice Stream C, Antarctica, sticky spots detected by microearthquake monitoring, Ann. Glaciol., 20, 183–186, https://doi.org/10.3189/1994AoG20-1-183-186, 1994. a
Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., Höppner, K., and the Science Team of Expedition PS104: Bathymetric controls on calving processes at Pine Island Glacier, The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, 2018. a
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planet. Sc. Lett., 409, 203–211, https://doi.org/10.1016/j.epsl.2014.11.003, 2015. a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf–ocean interaction for climate models, Ocean Model., 5, 157–170, https://doi.org/10.1016/S1463-5003(02)00019-7, 2003. a
Download
Short summary
Pinning points, locations where floating ice shelves run aground, modify ice flow and thickness. We use a model to quantify the Ross Ice Shelf and tributary ice stream response to a group of pinning points. Ice stream sensitivity to pinning points is conditioned by basal drag, and thus basal properties, upstream of the grounding line. Without the pinning points, a redistribution of resistive stresses supports faster flow and increased mass flux but with a negligible change in total ice volume.