Articles | Volume 15, issue 6
The Cryosphere, 15, 2647–2665, 2021
https://doi.org/10.5194/tc-15-2647-2021
The Cryosphere, 15, 2647–2665, 2021
https://doi.org/10.5194/tc-15-2647-2021

Research article 14 Jun 2021

Research article | 14 Jun 2021

Mechanics and dynamics of pinning points on the Shirase Coast, West Antarctica

Holly Still and Christina Hulbe

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021,https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021,https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
The 2020 Larsen C Ice Shelf surface melt is a 40-year record high
Suzanne Bevan, Adrian Luckman, Harry Hendon, and Guomin Wang
The Cryosphere, 14, 3551–3564, https://doi.org/10.5194/tc-14-3551-2020,https://doi.org/10.5194/tc-14-3551-2020, 2020
Short summary
Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting
Tong Zhang, Stephen F. Price, Matthew J. Hoffman, Mauro Perego, and Xylar Asay-Davis
The Cryosphere, 14, 3407–3424, https://doi.org/10.5194/tc-14-3407-2020,https://doi.org/10.5194/tc-14-3407-2020, 2020
A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020,https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary

Cited articles

Alley, R. B.: In search of ice-stream sticky spots, J. Glaciol., 39, 447–454, https://doi.org/10.3189/S0022143000016336, 1993. a
Anandakrishnan, S. and Alley, R. B.: Ice Stream C, Antarctica, sticky spots detected by microearthquake monitoring, Ann. Glaciol., 20, 183–186, https://doi.org/10.3189/1994AoG20-1-183-186, 1994. a
Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., Höppner, K., and the Science Team of Expedition PS104: Bathymetric controls on calving processes at Pine Island Glacier, The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, 2018. a
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planet. Sc. Lett., 409, 203–211, https://doi.org/10.1016/j.epsl.2014.11.003, 2015. a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf–ocean interaction for climate models, Ocean Model., 5, 157–170, https://doi.org/10.1016/S1463-5003(02)00019-7, 2003. a
Download
Short summary
Pinning points, locations where floating ice shelves run aground, modify ice flow and thickness. We use a model to quantify the Ross Ice Shelf and tributary ice stream response to a group of pinning points. Ice stream sensitivity to pinning points is conditioned by basal drag, and thus basal properties, upstream of the grounding line. Without the pinning points, a redistribution of resistive stresses supports faster flow and increased mass flux but with a negligible change in total ice volume.