Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Download
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
TC | Articles | Volume 14, issue 11
The Cryosphere, 14, 4063–4081, 2020
https://doi.org/10.5194/tc-14-4063-2020
The Cryosphere, 14, 4063–4081, 2020
https://doi.org/10.5194/tc-14-4063-2020

Research article 16 Nov 2020

Research article | 16 Nov 2020

Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria

Lea Hartl et al.

Related authors

Obtaining sub-daily new snow density from automated measurements in high mountain regions
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018,https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution
Vincent Peyaud, Coline Bouchayer, Olivier Gagliardini, Christian Vincent, Fabien Gillet-Chaulet, Delphine Six, and Olivier Laarman
The Cryosphere, 14, 3979–3994, https://doi.org/10.5194/tc-14-3979-2020,https://doi.org/10.5194/tc-14-3979-2020, 2020
Short summary
Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020,https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Possible biases in scaling-based estimates of glacier change: a case study in the Himalaya
Argha Banerjee, Disha Patil, and Ajinkya Jadhav
The Cryosphere, 14, 3235–3247, https://doi.org/10.5194/tc-14-3235-2020,https://doi.org/10.5194/tc-14-3235-2020, 2020
Short summary
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-133,https://doi.org/10.5194/tc-2020-133, 2020
Revised manuscript accepted for TC
Short summary
Spatial and temporal variations in glacier aerodynamic surface roughness during the melting season, as estimated at the August-one ice cap, Qilian mountains, China
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere, 14, 967–984, https://doi.org/10.5194/tc-14-967-2020,https://doi.org/10.5194/tc-14-967-2020, 2020
Short summary

Cited articles

Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014. 
ASD Inc.: FieldSpec® HandHeld2 Spectroradiometer User Manual, available at: https://www.malvernpanalytical.com/en/support/product-support/asd-range/fieldspec-range/handheld-2-hand-held-vnir-spectroradiometer#manuals, last access: 22 September 2020. 
Azzoni, R. S., Senese, A., Zerboni, A., Maugeri, M., Smiraglia, C., and Diolaiuti, G. A.: Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps, The Cryosphere, 10, 665–679, https://doi.org/10.5194/tc-10-665-2016, 2016. 
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012. 
Box J. E., van As D., and Steffen, K.: Greenland, Canadian and Icelandic land-ice albedo grids (2000–2016), Geological Survey of Denmark and Greenland Bulletin, 38, 53–56, 2017. 
Publications Copernicus
Download
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Citation