Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4063-2020
https://doi.org/10.5194/tc-14-4063-2020
Research article
 | 
16 Nov 2020
Research article |  | 16 Nov 2020

Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria

Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (20 Aug 2020) by Joseph MacGregor
AR by Lea Hartl on behalf of the Authors (29 Sep 2020)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (05 Oct 2020) by Joseph MacGregor
AR by Lea Hartl on behalf of the Authors (06 Oct 2020)  Author's response    Manuscript
ED: Publish as is (07 Oct 2020) by Joseph MacGregor
Download
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.