Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3449-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3449-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep ice layer formation in an alpine snowpack: monitoring and modeling
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Charles Fierz
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Alec van Herwijnen
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Dylan Longridge
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Nander Wever
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Related authors
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025, https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land surface, and hydrological models, with potential applications in similar high-alpine catchments.
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
The Cryosphere, 18, 5753–5767, https://doi.org/10.5194/tc-18-5753-2024, https://doi.org/10.5194/tc-18-5753-2024, 2024
Short summary
Short summary
We use novel wet-snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model over Switzerland. These data are complementary to available in situ snow depth observations as they capture a broad diversity of topographic conditions. Wet-snow maps allow us to detect a delayed melt onset in the model, which we resolve thanks to an improved parametrization. This paves the way to further evaluation, calibration, and data assimilation using wet-snow maps.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024, https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Short summary
Snow redistribution by wind and avalanches strongly influences snow hydrology in mountains. This study presents a novel modelling approach to best represent these processes in an operational context. The evaluation of the simulations against airborne snow depth measurements showed remarkable improvement in the snow distribution in mountains of the eastern Swiss Alps, with a representation of snow accumulation and erosion areas, suggesting promising benefits for operational snow melt forecasts.
Giulia Mazzotti, Clare Webster, Louis Quéno, Bertrand Cluzet, and Tobias Jonas
Hydrol. Earth Syst. Sci., 27, 2099–2121, https://doi.org/10.5194/hess-27-2099-2023, https://doi.org/10.5194/hess-27-2099-2023, 2023
Short summary
Short summary
This study analyses snow cover evolution in mountainous forested terrain based on 2 m resolution simulations from a process-based model. We show that snow accumulation patterns are controlled by canopy structure, but topographic shading modulates the timing of melt onset, and variability in weather can cause snow accumulation and melt patterns to vary between years. These findings advance our ability to predict how snow regimes will react to rising temperatures and forest disturbances.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025, https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
Short summary
Our study investigates the initiation of snow slab avalanches. Combining experimental data with numerical simulations, we show that on gentle slopes, cracks form and propagate due to compressive fractures within a weak layer. On steeper slopes, crack velocity can increase dramatically after approximately 5 m due to a fracture mode transition from compression to shear. Understanding these dynamics provides a crucial missing piece in the puzzle of dry-snow slab avalanche formation.
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025, https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary
Short summary
Avalanche formation depends on crack propagation in weak snow layers, but the conditions that stop a crack remain unclear. We show that slab touchdown reduces the energy driving crack growth, which can halt propagation even under static conditions. This suggests that crack arrest is influenced not only by snowpack variability or dynamics but also by mechanical interactions within the snowpack. Our findings refine avalanche prediction models and improve hazard assessment.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025, https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Short summary
This study assesses the performance and explainability of a random-forest classifier for predicting dry-snow avalanche danger levels during initial live testing. The model achieved ∼ 70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
The Cryosphere, 19, 1453–1468, https://doi.org/10.5194/tc-19-1453-2025, https://doi.org/10.5194/tc-19-1453-2025, 2025
Short summary
Short summary
Glide-snow avalanches release at the soil–snow interface due to a loss of friction, which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal monitoring setup for soil and local snow on an avalanche-prone slope. Seven glide-snow avalanches were released on the monitoring grid (winter seasons 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025, https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land surface, and hydrological models, with potential applications in similar high-alpine catchments.
Michael Lombardo, Amelie Fees, Anders Kaestner, Alec van Herwijnen, Jürg Schweizer, and Peter Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-304, https://doi.org/10.5194/egusphere-2025-304, 2025
Short summary
Short summary
Water flow in snow is important for many applications including snow hydrology and avalanche forecasting. This work investigated the role of capillary forces at the soil-snow interface during capillary rise experiments using neutron radiography. The results showed that the properties of both the snow and the transitional layer below the snow affected the water flow. This work will allow for better representations of water flow across the soil-snow interface in snowpack models.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
The Cryosphere, 19, 597–618, https://doi.org/10.5194/tc-19-597-2025, https://doi.org/10.5194/tc-19-597-2025, 2025
Short summary
Short summary
We use three sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined and that it was generated by the interaction of air with steep topography. Our results show that kilometre-scale models are useful tools for exploring extreme precipitation in this region and that more observations of rainfall are needed.
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174, https://doi.org/10.5194/egusphere-2024-4174, 2025
Short summary
Short summary
Global warming provokes permafrost to thaw, damaging landscapes and infrastructure. This study explores methods to slow this thawing at an alpine site. We investigate different methods based on passive and active cooling system. The best approach mixes both methods and manages heat flow, potentially allowing excess energy to be used locally.
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 321–334, https://doi.org/10.5194/nhess-25-321-2025, https://doi.org/10.5194/nhess-25-321-2025, 2025
Short summary
Short summary
To release a slab avalanche, a crack in a weak snow layer beneath a cohesive slab has to propagate. Information on that is essential for assessing avalanche risk. In the field, information can be gathered with the propagation saw test (PST). However, there are different standards on how to cut the PST. In this study, we experimentally investigate the effect of these different column geometries and provide models to correct for imprecise field test geometry effects on the critical cut length.
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
The Cryosphere, 18, 5753–5767, https://doi.org/10.5194/tc-18-5753-2024, https://doi.org/10.5194/tc-18-5753-2024, 2024
Short summary
Short summary
We use novel wet-snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model over Switzerland. These data are complementary to available in situ snow depth observations as they capture a broad diversity of topographic conditions. Wet-snow maps allow us to detect a delayed melt onset in the model, which we resolve thanks to an improved parametrization. This paves the way to further evaluation, calibration, and data assimilation using wet-snow maps.
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024, https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Short summary
Snow redistribution by wind and avalanches strongly influences snow hydrology in mountains. This study presents a novel modelling approach to best represent these processes in an operational context. The evaluation of the simulations against airborne snow depth measurements showed remarkable improvement in the snow distribution in mountains of the eastern Swiss Alps, with a representation of snow accumulation and erosion areas, suggesting promising benefits for operational snow melt forecasts.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76, https://doi.org/10.5194/gmd-2024-76, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Avalanche seismic detection systems are key for forecasting, but distinguishing avalanches from other seismic sources remains challenging. We propose novel autoencoder models to automatically extract features and compare them with standard seismic attributes. These features are then used to classify avalanches and noise events. The autoencoder feature classifiers have the highest sensitivity to detect avalanches, while the standard seismic classifier performs better overall.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023, https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary
Short summary
We monitor the amount of snow on the ground using passive radiofrequency identification (RFID) tags. These small and inexpensive tags are wirelessly read by a stationary reader placed above the snowpack. Variations in the radiofrequency phase delay accurately reflect variations in snow amount, known as snow water equivalent. Additionally, each tag is equipped with a sensor that monitors the snow temperature.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Giulia Mazzotti, Clare Webster, Louis Quéno, Bertrand Cluzet, and Tobias Jonas
Hydrol. Earth Syst. Sci., 27, 2099–2121, https://doi.org/10.5194/hess-27-2099-2023, https://doi.org/10.5194/hess-27-2099-2023, 2023
Short summary
Short summary
This study analyses snow cover evolution in mountainous forested terrain based on 2 m resolution simulations from a process-based model. We show that snow accumulation patterns are controlled by canopy structure, but topographic shading modulates the timing of melt onset, and variability in weather can cause snow accumulation and melt patterns to vary between years. These findings advance our ability to predict how snow regimes will react to rising temperatures and forest disturbances.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Bastian Bergfeld, Alec van Herwijnen, Benjamin Reuter, Grégoire Bobillier, Jürg Dual, and Jürg Schweizer
The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, https://doi.org/10.5194/tc-15-3539-2021, 2021
Short summary
Short summary
The modern picture of the snow slab avalanche release process involves a
dynamic crack propagation phasein which a whole slope becomes detached. The present work contains the first field methodology which provides the temporal and spatial resolution necessary to study this phase. We demonstrate the versatile capabilities and accuracy of our method by revealing intricate dynamics and present how to determine relevant characteristics of crack propagation such as crack speed.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Cited articles
Albert, M. R. and Perron Jr., F. E.: Ice layer and surface crust permeability
in a seasonal snow pack, Hydrol. Process., 14, 3207–3214,
https://doi.org/10.1002/1099-1085(20001230)14:18{<}3207::AID-HYP196{>}3.0.CO;2-C, 2000. a
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments, The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, 2016. a, b
Avanzi, F., Petrucci, G., Matzl, M., Schneebeli, M., and De Michele, C.: Early
formation of preferential flow in a homogeneous snowpack observed by
micro-CT, Water Resour. Res., 53, 3713–3729, https://doi.org/10.1002/2016WR019502,
2017. a
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss
avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35,
123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012. a
Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack, The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, 2020. a, b
Coléou, C. and Lesaffre, B.: Irreducible water saturation in snow:
experimental results in a cold laboratory, Ann. Glaciol., 26, 64–68,
https://doi.org/10.3189/1998AoG26-1-64-68, 1998. a
D'Amboise, C. J. L., Müller, K., Oxarango, L., Morin, S., and Schuler, T. V.: Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model, Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, 2017. a
Denoth, A.: Snow dielectric measurements, Adv. Space Res., 9, 233–243,
https://doi.org/10.1016/0273-1177(89)90491-2, 1989. a
DiCarlo, D. A.: Capillary pressure overshoot as a function of imbibition flux
and initial water content, Water Resour. Res., 43,
https://doi.org/10.1029/2006WR005550, 2007. a, b
DiCarlo, D. A.: Stability of gravity-driven multiphase flow in porous media: 40
Years of advancements, Water Resour. Res., 49, 4531–4544,
https://doi.org/10.1002/wrcr.20359, 2013. a
Eiriksson, D., Whitson, M., Luce, C. H., Marshall, H. P., Bradford, J., Benner,
S. G., Black, T., Hetrick, H., and McNamara, J. P.: An evaluation of the
hydrologic relevance of lateral flow in snow at hillslope and catchment
scales, Hydrol. Process., 27, 640–654, https://doi.org/10.1002/hyp.9666, 2013. a
Fierz, C.: Temperature Profile of Snowpack, in: Encyclopedia of Snow, Ice and
Glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer Netherlands, 1151–1154, https://doi.org/10.1007/978-90-481-2642-2_569, 2011. a
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung,
D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The
international classification for seasonal snow on the ground, IHP-VII
Technical Documents in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP,
Paris, available at:
http://unesdoc.unesco.org/images/0018/001864/186462e.pdf (last access: 14 October 2020), 2009. a, b, c, d, e, f, g, h
Hagenmuller, P. and Pilloix, T.: A New Method for Comparing and Matching Snow
Profiles, Application for Profiles Measured by Penetrometers, Front. Earth
Sci., 4, 52, https://doi.org/10.3389/feart.2016.00052, 2016. a
Hammonds, K. and Baker, I.: Investigating the thermophysical properties of the
ice–snow interface under a controlled temperature gradient Part II:
Analysis, Cold Reg. Sci. Technol., 125, 12–20,
https://doi.org/10.1016/j.coldregions.2016.01.006, 2016. a
Hammonds, K., Lieb-Lappen, R., Baker, I., and Wang, X.: Investigating the
thermophysical properties of the ice–snow interface under a controlled
temperature gradient: Part I: Experiments and Observations, Cold Reg.
Sci. Technol., 120, 157–167, https://doi.org/10.1016/j.coldregions.2015.09.006, 2015. a
Hirashima, H., Yamaguchi, S., and Katsushima, T.: A multi-dimensional water
transport model to reproduce preferential flow in the snowpack, Cold Reg.
Sci. Technol., 108, 80–90, https://doi.org/10.1016/j.coldregions.2014.09.004, 2014. a, b
Hirashima, H., Avanzi, F., and Yamaguchi, S.: Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments, Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017, 2017. a
Hirashima, H., Avanzi, F., and Wever, N.: Wet-snow metamorphism drives the
transition from preferential to matrix flow in snow, Geophys. Res. Lett., 46, 14548–14557,
https://doi.org/10.1029/2019GL084152, 2019. a, b
Jamieson, B.: Formation of refrozen snowpack layers and their role in slab
avalanche release, Rev. Geophys., 44, RG2001, https://doi.org/10.1029/2005RG000176,
2006. a
Juras, R., Würzer, S., Pavlásek, J., Vitvar, T., and Jonas, T.: Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions, Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, 2017. a
Katsushima, T., Yamaguchi, S., Kumakura, T., and Sato, A.: Experimental
analysis of preferential flow in dry snowpack, Cold Reg. Sci. Technol., 85,
206–216, https://doi.org/10.1016/j.coldregions.2012.09.012, 2013. a, b
Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T., and Kumakura, T.:
Observation of fingering flow and lateral flow development in layered dry
snowpack by using MRI, in: International Snow Science Workshop Proceedings
2018, Innsbruck, Austria, 971–975,
available at: http://arc.lib.montana.edu/snow-science/item/2689 (last
access: 14 October 2020), 2018. a
Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T., and Kumakura, T.:
Nondestructive three-dimensional observations of flow finger and lateral flow
development in dry snow using magnetic resonance imaging, Cold Reg. Sci.
Technol., 170, 102956, https://doi.org/10.1016/j.coldregions.2019.102956, 2020. a
Larue, F., Royer, A., De Sève, D., Roy, A., Picard, G., Vionnet, V., and
Cosme, E.: Simulation and Assimilation of Passive Microwave Data Using a
Snowpack Model Coupled to a Calibrated Radiative Transfer Model Over
Northeastern Canada, Water Resour. Res., 54, 4823–4848,
https://doi.org/10.1029/2017WR022132, 2018. a
Leroux, N. R. and Pomeroy, J. W.: Modelling capillary hysteresis effects on
preferential flow through melting and cold layered snowpacks, Adv. Water
Resour., 107, 250–264, https://doi.org/10.1016/j.advwatres.2017.06.024, 2017. a, b
Leroux, N. R. and Pomeroy, J. W.: Simulation of Capillary Pressure Overshoot in
Snow Combining Trapping of the Wetting Phase With a Nonequilibrium Richards
Equation Model, Water Resour. Res., 55, 236–248,
https://doi.org/10.1029/2018WR022969, 2019. a, b
Machguth, H., MacFerrin, M., van As, D., Box, J. E., Charalampidis, C., Colgan,
W., Fausto, R. S., Meijer, H. A. J., Mosley-Thompson, E., and van de Wal, R.
S. W.: Greenland meltwater storage in firn limited by near-surface ice
formation, Nat. Clim. Change, 6, 390–393, https://doi.org/10.1038/nclimate2899, 2016. a
Marsh, P.: Water Flow through Snow and Firn, in: Encyclopedia of Hydrological
Sciences, edited by: Anderson, M. G. and McDonnell, J. J.,
https://doi.org/10.1002/0470848944.hsa167, 2006. a
Marty, C. and Meister, R.: Long-term snow and weather observations at
Weissfluhjoch and its relation to other high-altitude observatories in the
Alps, Theor. Appl. Climatol., 110, 573–583,
https://doi.org/10.1007/s00704-012-0584-3, 2012. a
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976. a
Ozeki, T. and Akitaya, E.: Energy balance and formation of sun crust in snow,
Ann. Glaciol., 26, 35–38, https://doi.org/10.3189/1998AoG26-1-35-38, 1998. a
Pfeffer, W. T. and Humphrey, N. F.: Formation of ice layers by infiltration and
refreezing of meltwater, Ann. Glaciol., 26, 83–91,
https://doi.org/10.1017/S0260305500014610, 1998. a
Quéno, L., Vionnet, V., Cabot, F., Vrécourt, D., and Dombrowski-Etchevers,
I.: Forecasting and modelling ice layer formation on the snowpack due to
freezing precipitation in the Pyrenees, Cold Reg. Sci. Technol., 146,
19–31, https://doi.org/10.1016/j.coldregions.2017.11.007, 2018. a, b
Quéno, L., Fierz, C., van Herwijnen, A., Longridge, D., and Wever, N.:
WFJ_ICE_LAYERS: Multi-instrument data for monitoring deep ice layer
formation in an alpine snowpack, EnviDat., https://doi.org/10.16904/envidat.170,
2020. a
Rees, A., Lemmetyinen, J., Derksen, C., Pulliainen, J., and English, M.:
Observed and modelled effects of ice lens formation on passive microwave
brightness temperatures over snow covered tundra, Remote Sens. Environ., 114,
116–126, https://doi.org/10.1016/j.rse.2009.08.013, 2010. a
Reynolds, J. M.: An introduction to applied and environmental geophysics, John
Wiley and Sons, 2011. a
Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK, The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019, 2019. a
Roy, A., Royer, A., St-Jean-Rondeau, O., Montpetit, B., Picard, G., Mavrovic, A., Marchand, N., and Langlois, A.: Microwave snow emission modeling uncertainties in boreal and subarctic environments, The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, 2016. a
Sand, K. and Bruland, O.: Application of Georadar for Snow Cover Surveying,
Hydrol. Res., 29, 361–370, https://doi.org/10.2166/nh.1998.0026, 1998. a
Schmid, L., Heilig, A., Mitterer, C., Schweizer, J., Maurer, H., Okorn, R., and
Eisen, O.: Continuous snowpack monitoring using upward-looking
ground-penetrating radar technology, J. Glaciol., 60, 509–525,
https://doi.org/10.3189/2014JoG13J084, 2014. a, b, c, d
Schneebeli, M.: Development and stability of preferential flow paths in a
layered snowpack, in: Biogeochemistry of Seasonally Snow-Covered Catchments
(Proceedings of a Boulder Symposium July 1995), edited by: Tonnessen, K.,
Williams, M., and Tranter, M., IAHS, vol. 228, 89–95,
1995. a
Schneebeli, M., Pielmeier, C., and Johnson, J. B.: Measuring snow
microstructure and hardness using a high resolution penetrometer, Cold Reg.
Sci. Technol., 30, 101–114, https://doi.org/10.1016/S0165-232X(99)00030-0, 1999. a
Singh, P., Spitzbart, G., Huebl, H., and Weinmeister, H. W.: Importance of ice
layers on liquid water storage within a snowpack, Hydrol. Process., 13,
1799–1805,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13{<}1799::AID-HYP880{>}3.0.CO;2-M,
1999. a
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a, b
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Watts, T., Rutter, N., Toose, P., Derksen, C., Sandells, M., and Woodward, J.: Brief communication: Improved measurement of ice layer density in seasonal snowpacks, The Cryosphere, 10, 2069–2074, https://doi.org/10.5194/tc-10-2069-2016, 2016. a
Webb, R. W., Fassnacht, S. R., Gooseff, M. N., and Webb, S. W.: The Presence of
Hydraulic Barriers in Layered Snowpacks: TOUGH2 Simulations and Estimated
Diversion Lengths, Transport Porous Med., 123, 457–476,
https://doi.org/10.1007/s11242-018-1079-1, 2018a. a
Webb, R. W., Williams, M. W., and Erickson, T. A.: The Spatial and Temporal
Variability of Meltwater Flow Paths: Insights From a Grid of Over 100 Snow
Lysimeters, Water Resour. Res., 54, 1146–1160, https://doi.org/10.1002/2017WR020866,
2018b. a
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014. a, b, c, d
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015. a, b
WSL Institute for Snow and Avalanche Research SLF: WFJ_MOD: Meteorological
and snowpack measurements from Weissfluhjoch, Davos, Switzerland,
https://doi.org/10.16904/1, 2015. a, b
Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T.: Modelling liquid
water transport in snow under rain-on-snow conditions – considering preferential flow, Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, 2017.
a, b, c
Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A., and Kumakura, T.:
Dependence of the water retention curve of snow on snow characteristics, Ann.
Glaciol., 53, 6–12, https://doi.org/10.3189/2012AoG61A001, 2012. a
Yamaguchi, S., Hirashima, H., and Ishii, Y.: Year-to-year changes in
preferential flow development in a seasonal snowpack and their dependence on
snowpack conditions, Cold Reg. Sci. Technol., 149, 95–105,
https://doi.org/10.1016/j.coldregions.2018.02.009, 2018. a, b
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the...