Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3449-2020
https://doi.org/10.5194/tc-14-3449-2020
Research article
 | 
17 Oct 2020
Research article |  | 17 Oct 2020

Deep ice layer formation in an alpine snowpack: monitoring and modeling

Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (26 Jun 2020) by Guillaume Chambon
AR by Louis Quéno on behalf of the Authors (26 Jun 2020)  Author's response   Manuscript 
ED: Publish as is (24 Jul 2020) by Guillaume Chambon
AR by Louis Quéno on behalf of the Authors (03 Sep 2020)  Manuscript 
Download
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.