Articles | Volume 14, issue 1
https://doi.org/10.5194/tc-14-309-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-309-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Department of Geography, University of Sheffield, Winter Street, Sheffield, South Yorkshire, S10 2TN, UK
Institute of Biological, Environmental and Rural Sciences,
Aberystwyth University, Aberystwyth, SY23 3DA, UK
Andrew J. Tedstone
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Berkely Square, Bristol, BS8 1RL, UK
Christopher Williamson
School of Biological Sciences, University of Bristol, Tyndall Ave, Bristol, BS8 1TQ, UK
Jenine McCutcheon
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Andrew J. Hodson
Department of Geology, University Centre in Svalbard, Longyearbyen, 9171, Norway
Department of Environmental Sciences, Western Norway University of
Applied Sciences, 6856 Sogndal, Norway
Archana Dayal
Department of Geography, University of Sheffield, Winter Street, Sheffield, South Yorkshire, S10 2TN, UK
Department of Geology, University Centre in Svalbard, Longyearbyen, 9171, Norway
McKenzie Skiles
Department of Geography, University of Utah, Central Campus Dr, Salt Lake City, Utah, USA
Stefan Hofer
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Berkely Square, Bristol, BS8 1RL, UK
Robert Bryant
Department of Geography, University of Sheffield, Winter Street, Sheffield, South Yorkshire, S10 2TN, UK
Owen McAree
Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
Andrew McGonigle
Department of Geography, University of Sheffield, Winter Street, Sheffield, South Yorkshire, S10 2TN, UK
School of Geosciences, University of Sydney, Sydney, NSW 2006,
Australia
Jonathan Ryan
Institute at Brown for Environment and Society, Brown University,
Providence, Rhode Island, USA
Alexandre M. Anesio
Department of Environmental Science, Aarhus University, 4000
Roskilde, Denmark
Tristram D. L. Irvine-Fynn
Department of Geography and Earth Science, Aberystwyth University,
Wales, SY23 3DB, UK
Alun Hubbard
Centre for Gas Hydrate, Environment and Climate, University of Tromsø, 9010 Tromsø, Norway
Edward Hanna
School of Geography and Lincoln Centre for Water and Planetary Health, University of Lincoln, Think Tank, Ruston Way, Lincoln, LN6 7DW, UK
Mark Flanner
Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St. Ann Arbor, Michigan, USA
Sathish Mayanna
German Research Centre for Geosciences, GFZ, Potsdam, Germany
Liane G. Benning
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
German Research Centre for Geosciences, GFZ, Potsdam, Germany
Department of Earth Sciences, University of Berlin, Berlin, Germany
Dirk van As
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Marian Yallop
School of Biological Sciences, University of Bristol, Tyndall Ave, Bristol, BS8 1TQ, UK
James B. McQuaid
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Thomas Gribbin
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Berkely Square, Bristol, BS8 1RL, UK
Martyn Tranter
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Berkely Square, Bristol, BS8 1RL, UK
Related authors
Andrew J. Tedstone, Joseph M. Cook, Christopher J. Williamson, Stefan Hofer, Jenine McCutcheon, Tristram Irvine-Fynn, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 521–538, https://doi.org/10.5194/tc-14-521-2020, https://doi.org/10.5194/tc-14-521-2020, 2020
Short summary
Short summary
Albedo describes how much light that hits a surface is reflected without being absorbed. Low-albedo ice surfaces melt more quickly. There are large differences in the albedo of bare-ice areas of the Greenland Ice Sheet. They are caused both by dark glacier algae and by the condition of the underlying ice. Changes occur over centimetres to metres, so satellites do not always detect real albedo changes. Estimates of melt made using satellite measurements therefore tend to be underestimates.
Alexandra T. Holland, Christopher J. Williamson, Fotis Sgouridis, Andrew J. Tedstone, Jenine McCutcheon, Joseph M. Cook, Ewa Poniecka, Marian L. Yallop, Martyn Tranter, Alexandre M. Anesio, and The Black & Bloom Group
Biogeosciences, 16, 3283–3296, https://doi.org/10.5194/bg-16-3283-2019, https://doi.org/10.5194/bg-16-3283-2019, 2019
Short summary
Short summary
This paper provides a preliminary data set for dissolved nutrient abundance in the Dark Zone of the Greenland Ice Sheet. This 15-year marked darkening has since been attributed to glacier algae blooms, yet has not been accounted for in current melt rate models. We conclude that the dissolved organic phase dominates surface ice environments and that factors other than macronutrient limitation control the extent and magnitude of the glacier algae blooms.
Joseph M. Cook, Andrew J. Hodson, Alex S. Gardner, Mark Flanner, Andrew J. Tedstone, Christopher Williamson, Tristram D. L. Irvine-Fynn, Johan Nilsson, Robert Bryant, and Martyn Tranter
The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, https://doi.org/10.5194/tc-11-2611-2017, 2017
Short summary
Short summary
Biological growth darkens snow and ice, causing it to melt faster. This is often referred to as
bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Andrew J. Tedstone, Jonathan L. Bamber, Joseph M. Cook, Christopher J. Williamson, Xavier Fettweis, Andrew J. Hodson, and Martyn Tranter
The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, https://doi.org/10.5194/tc-11-2491-2017, 2017
Short summary
Short summary
The bare ice albedo of the south-west Greenland ice sheet varies dramatically between years. The reasons are unclear but likely involve darkening by inorganic particulates, cryoconite and ice algae. We use satellite imagery to examine dark ice dynamics and climate model outputs to find likely climatological controls. Outcropping particulates can explain the spatial extent of dark ice, but the darkening itself is likely due to ice algae growth controlled by meltwater and light availability.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Thomas J. Ballinger, Kent Moore, Qinghua Ding, Amy H. Butler, James E. Overland, Richard L. Thoman, Ian Baxter, Zhe Li, and Edward Hanna
Weather Clim. Dynam., 5, 1473–1488, https://doi.org/10.5194/wcd-5-1473-2024, https://doi.org/10.5194/wcd-5-1473-2024, 2024
Short summary
Short summary
This study chronicles the meteorological conditions that led to the anomalous, tandem March 2023 ice melt event in the Labrador and Bering seas. A sudden stratospheric warming event initiated the development of an anticyclonic circulation pattern over the Greenland–Labrador region, while the La Niña background state supported ridging conditions over Alaska, both of which aided northward transport of warm, moist air and drove the concurrent sea ice melt extremes.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
Ian Delaney, Andrew Tedstone, Mauro A. Werder, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2580, https://doi.org/10.5194/egusphere-2024-2580, 2024
Short summary
Short summary
Sediment transport in rivers and under glaciers depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Under glaciers, pressurized water changes velocity more than shape. Due to these differences, this study shows that sediment transport under glaciers varies widely and peaks before water flow does, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2583, https://doi.org/10.5194/egusphere-2024-2583, 2024
Short summary
Short summary
Light absorbing particles (LAPs) are often present as a mixture on snow surfaces, and are important to disentangle because their darkening effect varies, but also because the processes governing their presence and accumulation on snow surfaces are different. This study presents a novel method to retrieve the concentration and albedo reducing effect of different LAPs present at the snow surface from surface spectral albedo. The method is then successfully applied to observations on seasonal snow.
Aishah Shittu, Kirsty Pringle, Stephen Arnold, Richard Pope, Ailish Graham, Carly Reddington, Richard Rigby, and James McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-1685, https://doi.org/10.5194/egusphere-2024-1685, 2024
Short summary
Short summary
The study highlighted the importance of data cleaning in improving the raw Atmotube Pro PM2.5 data. The data cleaning method was successful in improving the inter-sensor variability among the Atmotube Pro sensors data. This study showed 62.5 % of the sensors used for the study exhibited greater precision in their measurements. The overall performance showed the sensors passed the base testing recommended by USEPA using one-hour averaged data.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Gabrielle Emma Kleber, Leonard Magerl, Alexandra V. Turchyn, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1273, https://doi.org/10.5194/egusphere-2024-1273, 2024
Short summary
Short summary
Our research on Svalbard has uncovered that melting glaciers can release large amounts of methane, a potent greenhouse gas. By studying a glacier over two summers, we found that its river was highly concentrated in methane. This suggests that as the Arctic warms and glaciers melt, they could be a significant source of methane emissions. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as similar processes may occur across the Arctic.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Guillaume Lamarche-Gagnon, Marek Stibal, Alexandre M. Anesio, Jemma L. Wadham, Jon Hawkings, Lukáš Falteisek, Kristýna Vrbická, Petra Klímová, Jakub D. Žárský, Tyler J. Kohler, Elizabeth A. Bagshaw, Jade E. Hatton, Alex D. Beaton, and Jon Telling
EGUsphere, https://doi.org/10.5194/egusphere-2024-817, https://doi.org/10.5194/egusphere-2024-817, 2024
Preprint archived
Short summary
Short summary
To better understand the microbial ecosystems that underlay Earth’s glaciers, studies often rely on indirect sampling of the subglacial environment via proglacial meltwater runoff. Our research in Greenland reveals that fluctuations in glacier melt can affect microbial composition in runoff, highlighting important biases often overlooked in studies of glacial runoff that might skew interpretations as to the subglacial origin of microbial communities exported within meltwaters.
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
EGUsphere, https://doi.org/10.5194/egusphere-2024-492, https://doi.org/10.5194/egusphere-2024-492, 2024
Short summary
Short summary
This study provides new insights into the transformation of dissolved organic matter (DOM) that takes place as meltwater flows through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microorganisms and sunlight to alter the DOM in glacial meltwater. This is important as supraglacial meltwaters deliver DOM and nutrients to microorganisms living in downstream receiving aquatic environments.
Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis
The Cryosphere, 18, 475–488, https://doi.org/10.5194/tc-18-475-2024, https://doi.org/10.5194/tc-18-475-2024, 2024
Short summary
Short summary
The latest generation of climate models (Coupled Model Intercomparison Project Phase 6 – CMIP6) warm more over Greenland and the Arctic and thus also project a larger mass loss from the Greenland Ice Sheet (GrIS) compared to the previous generation of climate models (CMIP5). Our work suggests for the first time that part of the greater mass loss in CMIP6 over the GrIS is driven by a difference in the surface mass balance sensitivity from a change in cloud representation in the CMIP6 models.
Alberto Sanchez-Marroquin, Sarah L. Barr, Ian T. Burke, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 23, 13819–13834, https://doi.org/10.5194/acp-23-13819-2023, https://doi.org/10.5194/acp-23-13819-2023, 2023
Short summary
Short summary
The sources and concentrations of ice-nucleating particles (INPs) in the Arctic are still poorly understood. Here we report aircraft-based INP concentrations and aerosol composition in the western North American Arctic. The concentrations of INPs and all aerosol particles were low. The aerosol samples contained mostly sea salt and dust particles. Dust particles were more relevant for the INP concentrations than sea salt. However, dust alone cannot account for all of the measured INPs.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Elias Nkiaka, Robert G. Bryant, Joshua Ntajal, and Eliézer I. Biao
Hydrol. Earth Syst. Sci., 26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, https://doi.org/10.5194/hess-26-5899-2022, 2022
Short summary
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Zachary Fair, Mark Flanner, Adam Schneider, and S. McKenzie Skiles
The Cryosphere, 16, 3801–3814, https://doi.org/10.5194/tc-16-3801-2022, https://doi.org/10.5194/tc-16-3801-2022, 2022
Short summary
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022, https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Short summary
Without any reduction in our greenhouse gas emissions, the Greenland ice sheet surface mass loss can be brought in line with a medium-mitigation emissions scenario by reducing the solar downward flux at the top of the atmosphere by 1.5 %. In addition to reducing global warming, these solar geoengineering measures also dampen the well-known positive melt–albedo feedback over the ice sheet by 6 %. However, only stronger reductions in solar radiation could maintain a stable ice sheet in 2100.
Joachim Meyer, McKenzie Skiles, Jeffrey Deems, Kat Boremann, and David Shean
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-281, https://doi.org/10.5194/hess-2021-281, 2021
Revised manuscript not accepted
Short summary
Short summary
Seasonally accumulated snow in the mountains forms a natural water reservoir which is challenging to measure in the rugged and remote terrain. Here, we use overlapping aerial images that model surface elevations using software to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the utility of aerial images to improve our ability to capture the amount of water held as snow in remote and inaccessible locations.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-34, https://doi.org/10.5194/tc-2021-34, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow that accumulates seasonally in mountains forms a natural water reservoir and is difficult to measure in the rugged and remote landscapes. Here, we use modern software that models surface elevations from overlapping aerial images to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the potential value of aerial images for understanding the amount of water held as snow in remote and inaccessible locations.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Miranda J. Nicholes, Christopher Williamson, Martyn Tranter, Alexandra Holland, Marian Yallop, and Alexandre Anesio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-227, https://doi.org/10.5194/bg-2020-227, 2020
Publication in BG not foreseen
Short summary
Short summary
This incubation experiment assessed the role of solar radiation and heterotrophic bacteria in the degradation of organic carbon in surface ice of the Greenland Ice Sheet. Although ultraviolet radiation was found to alter carbon composition, heterotrophic degradation caused the greatest changes to both carbon composition and quantity. Both processes are likely interlinked within the surface ice and are fundamental to controlling the composition of carbon exported to downstream environments.
Kirsti Ashworth, Silvia Bucci, Peter J. Gallimore, Junghwa Lee, Beth S. Nelson, Alberto Sanchez-Marroquín, Marina B. Schimpf, Paul D. Smith, Will S. Drysdale, Jim R. Hopkins, James D. Lee, Joe R. Pitt, Piero Di Carlo, Radovan Krejci, and James B. McQuaid
Atmos. Chem. Phys., 20, 7193–7216, https://doi.org/10.5194/acp-20-7193-2020, https://doi.org/10.5194/acp-20-7193-2020, 2020
Short summary
Short summary
In July 2017 we flew three research flights around London during European Facility for Airborne Research (EUFAR) training. We made continuous measurements of concentrations of key pollutants (ozone, NOx, aerosol particles, CO, CO2 and methane) and meteorology, and we collected periodic samples of air to analyse for volatile organic compounds. We saw evidence that plumes of pollution from the city, strong local emissions and pollution from distant sources all contribute to regional pollution.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Alison Delhasse, Christoph Kittel, Charles Amory, Stefan Hofer, Dirk van As, Robert S. Fausto, and Xavier Fettweis
The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020, https://doi.org/10.5194/tc-14-957-2020, 2020
Short summary
Short summary
The ERA5 reanalysis of the ECMWF replaced the ERA-Interim in August 2019 and has never been evaluated over Greenland. The aim was to evaluate the performance of ERA5 to simulate the near-surface climate of the Greenland Ice sheet (GrIS) against ERA-Interim and regional climate models with the help of in situ observations from the PROMICE dataset. We also highlighted that polar regional climate models are still a useful tool to study the GrIS climate compared to ERA5.
Andrew J. Tedstone, Joseph M. Cook, Christopher J. Williamson, Stefan Hofer, Jenine McCutcheon, Tristram Irvine-Fynn, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 521–538, https://doi.org/10.5194/tc-14-521-2020, https://doi.org/10.5194/tc-14-521-2020, 2020
Short summary
Short summary
Albedo describes how much light that hits a surface is reflected without being absorbed. Low-albedo ice surfaces melt more quickly. There are large differences in the albedo of bare-ice areas of the Greenland Ice Sheet. They are caused both by dark glacier algae and by the condition of the underlying ice. Changes occur over centimetres to metres, so satellites do not always detect real albedo changes. Estimates of melt made using satellite measurements therefore tend to be underestimates.
Alison Delhasse, Edward Hanna, Christoph Kittel, and Xavier Fettweis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-332, https://doi.org/10.5194/tc-2019-332, 2020
Preprint withdrawn
Short summary
Short summary
Significant melting events over Greenland ice sheet related to unusual atmospheric pattern in summer, as observed this summer 2019, are still not considered by the new generation of Earth-system models (CMIP6) and therefore the projected surface melt increase of the ice sheet is likely to be underestimated if such changes persist in the next decades.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Alberto Sanchez-Marroquin, Duncan H. P. Hedges, Matthew Hiscock, Simon T. Parker, Philip D. Rosenberg, Jamie Trembath, Richard Walshaw, Ian T. Burke, James B. McQuaid, and Benjamin J. Murray
Atmos. Meas. Tech., 12, 5741–5763, https://doi.org/10.5194/amt-12-5741-2019, https://doi.org/10.5194/amt-12-5741-2019, 2019
Short summary
Short summary
Sampling coarse-mode aerosol from a fast-moving research aircraft is challenging and can be subject to substantial losses and enhancements. We characterise these losses and enhancements for an inlet system designed to collect aerosol onto filters. We go on to present an application of this inlet system where we use electron microscopy to study the size and composition of the collected aerosol particles.
Alexander D. Harrison, Katherine Lever, Alberto Sanchez-Marroquin, Mark A. Holden, Thomas F. Whale, Mark D. Tarn, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 19, 11343–11361, https://doi.org/10.5194/acp-19-11343-2019, https://doi.org/10.5194/acp-19-11343-2019, 2019
Short summary
Short summary
Mineral dusts are a source of ice-nucleating particles (INPs) in the atmosphere. Here we present a comprehensive survey of the ice-nucleating ability of naturally occurring quartz. We show the ice-nucleating variability of quartz and its sensitivity to time spent in water and air. We propose four new parameterizations for the minerals quartz, K feldspar, albite and plagioclase to predict INP concentrations in the atmosphere and show that K-feldspar is the dominant INP type in mineral dusts.
Cheng Dang, Charles S. Zender, and Mark G. Flanner
The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, https://doi.org/10.5194/tc-13-2325-2019, 2019
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019, https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Short summary
Arctic sea ice and the Greenland Ice Sheet (GrIS) are melting later in the year due to a warming climate. Through analyses of weather station, climate model, and reanalysis data, physical links are evaluated between Baffin Bay open water duration and western GrIS melt conditions. We show that sub-Arctic air mass movement across this portion of the GrIS strongly influences late summer and autumn melt, while near-surface, off-ice winds inhibit westerly atmospheric heat transfer from Baffin Bay.
Alexandra T. Holland, Christopher J. Williamson, Fotis Sgouridis, Andrew J. Tedstone, Jenine McCutcheon, Joseph M. Cook, Ewa Poniecka, Marian L. Yallop, Martyn Tranter, Alexandre M. Anesio, and The Black & Bloom Group
Biogeosciences, 16, 3283–3296, https://doi.org/10.5194/bg-16-3283-2019, https://doi.org/10.5194/bg-16-3283-2019, 2019
Short summary
Short summary
This paper provides a preliminary data set for dissolved nutrient abundance in the Dark Zone of the Greenland Ice Sheet. This 15-year marked darkening has since been attributed to glacier algae blooms, yet has not been accounted for in current melt rate models. We conclude that the dissolved organic phase dominates surface ice environments and that factors other than macronutrient limitation control the extent and magnitude of the glacier algae blooms.
Adam Schneider, Mark Flanner, Roger De Roo, and Alden Adolph
The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019, https://doi.org/10.5194/tc-13-1753-2019, 2019
Short summary
Short summary
To study the process of snow aging, we engineered a prototype instrument called the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD). Using the NERD, we observed rapid snow aging in experiments with added light absorbing particles (LAPs). Particulate matter deposited on the snow increased absorption of solar energy and enhanced snow melt. These results indicate the role of LAPs' indirect effect on snow aging through a positive feedback mechanism related to the snow grain size.
Kenneth D. Mankoff, William Colgan, Anne Solgaard, Nanna B. Karlsson, Andreas P. Ahlstrøm, Dirk van As, Jason E. Box, Shfaqat Abbas Khan, Kristian K. Kjeldsen, Jeremie Mouginot, and Robert S. Fausto
Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, https://doi.org/10.5194/essd-11-769-2019, 2019
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 through 2017. Our results show three modes at the total ice-sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2017. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level rise estimates.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Claire L. Ryder, Franco Marenco, Jennifer K. Brooke, Victor Estelles, Richard Cotton, Paola Formenti, James B. McQuaid, Hannah C. Price, Dantong Liu, Patrick Ausset, Phil D. Rosenberg, Jonathan W. Taylor, Tom Choularton, Keith Bower, Hugh Coe, Martin Gallagher, Jonathan Crosier, Gary Lloyd, Eleanor J. Highwood, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018, https://doi.org/10.5194/acp-18-17225-2018, 2018
Short summary
Short summary
Every year, millions of tons of Saharan dust particles are carried across the Atlantic by the wind, where they can affect weather patterns and climate. Their sizes span orders of magnitude, but the largest (over 10 microns – around the width of a human hair) are difficult to measure and few observations exist. Here we show new aircraft observations of large dust particles, finding more than we would expect, and we quantify their properties which allow them to interact with atmospheric radiation.
Kang Yang, Laurence C. Smith, Leif Karlstrom, Matthew G. Cooper, Marco Tedesco, Dirk van As, Xiao Cheng, Zhuoqi Chen, and Manchun Li
The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, https://doi.org/10.5194/tc-12-3791-2018, 2018
Short summary
Short summary
A high-resolution spatially lumped hydrologic surface routing model is proposed to simulate meltwater transport over bare ice surfaces. In an ice-covered catchment, meltwater is routed by slow interfluve flow (~10−3–10−4 m s−1) followed by fast open-channel flow (~10−1 m s−1). Seasonal evolution of supraglacial stream-river networks substantially alters the magnitude and timing of moulin discharge with implications for subglacial hydrology and ice dynamics.
Yang Li and Mark G. Flanner
Atmos. Chem. Phys., 18, 16005–16018, https://doi.org/10.5194/acp-18-16005-2018, https://doi.org/10.5194/acp-18-16005-2018, 2018
Short summary
Short summary
Light-absorbing impurities enhance snowmelt by boosting the absorption of solar energy. It is therefore important for coupled aerosol–climate and ice sheet models to include this effect, and yet most do not. We conduct several thousand simulations and develop a kernel and linear equations relating melt runoff on the Greenland Ice Sheet to the timing and amount of black carbon within precipitation and dry deposition, which can be used to extend the utility of state-of-the-art aerosol models.
Edward Hanna, Xavier Fettweis, and Richard J. Hall
The Cryosphere, 12, 3287–3292, https://doi.org/10.5194/tc-12-3287-2018, https://doi.org/10.5194/tc-12-3287-2018, 2018
Short summary
Short summary
The latest/recent generations of global climate models do not simulate the recent (last 30 years) increase in atmospheric high pressure over Greenland in summer but rather projects decreasing pressure.
This difference between climate models and observations raises serious questions about the ability of the models to accurately represent future changes in Greenland climate and ice-sheet mass balance. There are also likely effects on climate predictions downstream, e.g. over Europe.
Alexander D. Harrison, Thomas F. Whale, Rupert Rutledge, Stephen Lamb, Mark D. Tarn, Grace C. E. Porter, Michael P. Adams, James B. McQuaid, George J. Morris, and Benjamin J. Murray
Atmos. Meas. Tech., 11, 5629–5641, https://doi.org/10.5194/amt-11-5629-2018, https://doi.org/10.5194/amt-11-5629-2018, 2018
Short summary
Short summary
The detection of low concentrations of ice-nucleating particles (INPs) is challenging. Here we present a new technique (IR-NIPI) that is sensitive to low concentrations of INPs (> 0.01 L−1) and uses an infrared camera with a novel calibration to detect the freezing of experimental suspensions. IR-NIPI temperature measurements prove to be robust with a series of comparisons to thermocouple measurements. Experimental comparisons to other freezing assay instruments are also in agreement.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
Joseph M. Cook, Andrew J. Hodson, Alex S. Gardner, Mark Flanner, Andrew J. Tedstone, Christopher Williamson, Tristram D. L. Irvine-Fynn, Johan Nilsson, Robert Bryant, and Martyn Tranter
The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, https://doi.org/10.5194/tc-11-2611-2017, 2017
Short summary
Short summary
Biological growth darkens snow and ice, causing it to melt faster. This is often referred to as
bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Andrew J. Tedstone, Jonathan L. Bamber, Joseph M. Cook, Christopher J. Williamson, Xavier Fettweis, Andrew J. Hodson, and Martyn Tranter
The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, https://doi.org/10.5194/tc-11-2491-2017, 2017
Short summary
Short summary
The bare ice albedo of the south-west Greenland ice sheet varies dramatically between years. The reasons are unclear but likely involve darkening by inorganic particulates, cryoconite and ice algae. We use satellite imagery to examine dark ice dynamics and climate model outputs to find likely climatological controls. Outcropping particulates can explain the spatial extent of dark ice, but the darkening itself is likely due to ice algae growth controlled by meltwater and light availability.
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
Christopher James Williamson, Rupert Perkins, Matthew Voller, Marian Louise Yallop, and Juliet Brodie
Biogeosciences, 14, 4485–4498, https://doi.org/10.5194/bg-14-4485-2017, https://doi.org/10.5194/bg-14-4485-2017, 2017
Short summary
Short summary
Red calcified seaweeds in UK rock pools have seasonal patterns in growth and photosynthesis driven by seawater temperature, light and the chemistry of rock pool water. This is important given future changes in environmental factors such as climate change and ocean acidification. Photosynthesis and calcification are strongly coupled and depend on light and temperature, whilst dissolution is regulated by rock pool water chemistry and is thus particularly vulnerable to environmental change.
Dirk van As, Andreas Bech Mikkelsen, Morten Holtegaard Nielsen, Jason E. Box, Lillemor Claesson Liljedahl, Katrin Lindbäck, Lincoln Pitcher, and Bent Hasholt
The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, https://doi.org/10.5194/tc-11-1371-2017, 2017
Short summary
Short summary
The Greenland ice sheet melts faster in a warmer climate. The ice sheet is flatter at high elevation, therefore atmospheric warming increases the melt area exponentially. For current climate conditions, we find that the ice sheet shape amplifies the total meltwater generation by roughly 60 %. Meltwater is not stored underneath the ice sheet, as previously found, but it does take multiple days for it to pass through the seasonally developing subglacial drainage channels, moderating discharge.
Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée
The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, https://doi.org/10.5194/tc-11-1015-2017, 2017
Short summary
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Gunnar Myhre, Wenche Aas, Ribu Cherian, William Collins, Greg Faluvegi, Mark Flanner, Piers Forster, Øivind Hodnebrog, Zbigniew Klimont, Marianne T. Lund, Johannes Mülmenstädt, Cathrine Lund Myhre, Dirk Olivié, Michael Prather, Johannes Quaas, Bjørn H. Samset, Jordan L. Schnell, Michael Schulz, Drew Shindell, Ragnhild B. Skeie, Toshihiko Takemura, and Svetlana Tsyro
Atmos. Chem. Phys., 17, 2709–2720, https://doi.org/10.5194/acp-17-2709-2017, https://doi.org/10.5194/acp-17-2709-2017, 2017
Short summary
Short summary
Over the past decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric composition models. The global mean radiative forcing is more strongly positive than reported in IPCC AR5.
James A. Bradley, Sandra Arndt, Marie Šabacká, Liane G. Benning, Gary L. Barker, Joshua J. Blacker, Marian L. Yallop, Katherine E. Wright, Christopher M. Bellas, Jonathan Telling, Martyn Tranter, and Alexandre M. Anesio
Biogeosciences, 13, 5677–5696, https://doi.org/10.5194/bg-13-5677-2016, https://doi.org/10.5194/bg-13-5677-2016, 2016
Short summary
Short summary
Soil development following glacier retreat was characterized using a novel integrated field, laboratory and modelling approach in Svalbard. We found community shifts in bacteria, which were responsible for driving cycles in carbon and nutrients. Allochthonous inputs were also important in sustaining bacterial production. This study shows how an integrated model–data approach can improve understanding and obtain a more holistic picture of soil development in an increasingly ice-free future world.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Geir Vatne and Tristram D. L. Irvine-Fynn
Hydrol. Earth Syst. Sci., 20, 2947–2964, https://doi.org/10.5194/hess-20-2947-2016, https://doi.org/10.5194/hess-20-2947-2016, 2016
Short summary
Short summary
Ten years of direct observations of an englacial conduit in a cold based glacier in Svalbard document for the first time how a vertical meltwater waterfall (moulin) is formed from gradual incision of a meltwater channel. This evolution appears to be dominated by knickpoints that incise upstream at rates several times faster than the vertical incision in adjacent near horizontal channel sections.
Robert Raiswell, Jon R. Hawkings, Liane G. Benning, Alex R. Baker, Ros Death, Samuel Albani, Natalie Mahowald, Michael D. Krom, Simon W. Poulton, Jemma Wadham, and Martyn Tranter
Biogeosciences, 13, 3887–3900, https://doi.org/10.5194/bg-13-3887-2016, https://doi.org/10.5194/bg-13-3887-2016, 2016
Short summary
Short summary
Iron is an essential nutrient for plankton growth. One important source of iron is wind-blown dust. The polar oceans are remote from dust sources but melting icebergs supply sediment that contains iron which is potentially available to plankton. We show that iceberg sediments contain more potentially bioavailable iron than wind-blown dust. Iceberg sources will become increasingly important with climate change and increased plankton growth can remove more carbon dioxide from the atmosphere.
Emily C. O'Donnell, Jemma L. Wadham, Grzegorz P. Lis, Martyn Tranter, Amy E. Pickard, Marek Stibal, Paul Dewsbury, and Sean Fitzsimons
Biogeosciences, 13, 3833–3846, https://doi.org/10.5194/bg-13-3833-2016, https://doi.org/10.5194/bg-13-3833-2016, 2016
Short summary
Short summary
We use a novel ion chromatographic analysis that provides the first identification and quantification of major low-molecular-weight dissolved organic carbon (LMW-DOC) compounds in basal ice. LMW-DOC concentrations were dependent on the bioavailability of the overridden organic carbon, which in turn was influenced by the type of overridden material. The overridden material may thus act as a direct (abiotic leaching) and indirect (microbial cycling) source of DOC to the subglacial environment.
G. Young, H. M. Jones, E. Darbyshire, K. J. Baustian, J. B. McQuaid, K. N. Bower, P. J. Connolly, M. W. Gallagher, and T. W. Choularton
Atmos. Chem. Phys., 16, 4063–4079, https://doi.org/10.5194/acp-16-4063-2016, https://doi.org/10.5194/acp-16-4063-2016, 2016
Wenshan Wang, Charles S. Zender, Dirk van As, Paul C. J. P. Smeets, and Michiel R. van den Broeke
The Cryosphere, 10, 727–741, https://doi.org/10.5194/tc-10-727-2016, https://doi.org/10.5194/tc-10-727-2016, 2016
Short summary
Short summary
We identify and correct station-tilt-induced biases in insolation observed by automatic weather stations on the Greenland Ice Sheet. Without tilt correction, only 40 % of clear days have the correct solar noon time (±0.5 h). The largest hourly bias exceeds 20 %. We estimate the tilt angles based on solar geometric relationship between insolation observed on horizontal surfaces and that on tilted surfaces, and produce shortwave radiation and albedo that agree better with independent data sets.
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015, https://doi.org/10.5194/tc-9-2163-2015, 2015
D. Singh, M. G. Flanner, and J. Perket
The Cryosphere, 9, 2057–2070, https://doi.org/10.5194/tc-9-2057-2015, https://doi.org/10.5194/tc-9-2057-2015, 2015
Short summary
Short summary
Our work quantifies the effect of snow/ice cover on Earth's top-of-atmosphere solar energy budget. We used higher resolution MODIS data, combined with microwave retrievals of snow presence and radiative kernels produced from 4 different models for Cryosphere Radiative Effect (CrRE) estimation. We have estimated a global land-based CrRE of about -2.6Wm-2 during 2001-2013, with about 59% of the effect originating from Antarctica. We were also be able to resolve contribution from mountain glaciers.
S. Eckhardt, B. Quennehen, D. J. L. Olivié, T. K. Berntsen, R. Cherian, J. H. Christensen, W. Collins, S. Crepinsek, N. Daskalakis, M. Flanner, A. Herber, C. Heyes, Ø. Hodnebrog, L. Huang, M. Kanakidou, Z. Klimont, J. Langner, K. S. Law, M. T. Lund, R. Mahmood, A. Massling, S. Myriokefalitakis, I. E. Nielsen, J. K. Nøjgaard, J. Quaas, P. K. Quinn, J.-C. Raut, S. T. Rumbold, M. Schulz, S. Sharma, R. B. Skeie, H. Skov, T. Uttal, K. von Salzen, and A. Stohl
Atmos. Chem. Phys., 15, 9413–9433, https://doi.org/10.5194/acp-15-9413-2015, https://doi.org/10.5194/acp-15-9413-2015, 2015
Short summary
Short summary
The concentrations of sulfate, black carbon and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality. In this study, we evaluate sulfate and BC concentrations from different updated models and emissions against a comprehensive pan-Arctic measurement data set. We find that the models improved but still struggle to get the maximum concentrations.
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
Atmos. Chem. Phys., 15, 8479–8520, https://doi.org/10.5194/acp-15-8479-2015, https://doi.org/10.5194/acp-15-8479-2015, 2015
Short summary
Short summary
Measurements of the Saharan atmosphere and of atmospheric mineral dust are lacking but are vital to our understanding of the climate of this region and their impacts further afield. Novel observations were made by the Fennec climate programme during June 2011 and 2012 using ground-based, remote sensing and airborne platforms. Here we describe the airborne observations and the contributions they have made to furthering our understanding of the Saharan climate system.
E. Johansson, S. Berglund, T. Lindborg, J. Petrone, D. van As, L.-G. Gustafsson, J.-O. Näslund, and H. Laudon
Earth Syst. Sci. Data, 7, 93–108, https://doi.org/10.5194/essd-7-93-2015, https://doi.org/10.5194/essd-7-93-2015, 2015
Short summary
Short summary
This paper presents a hydrological and meteorological data set from the Kangerlussuaq region, western Greenland. The data set is used to conceptualize and model the hydrological system and constitutes an important platform in order to describe the exchange of water between the surface, active layer, the lake, and the underlying talik. The resulting hydrological model will be used as a basis for biogeochemical mass-balance and transport calculations of the terrestrial and limnic ecosystems.
S. J. Doherty, C. M. Bitz, and M. G. Flanner
Atmos. Chem. Phys., 14, 11697–11709, https://doi.org/10.5194/acp-14-11697-2014, https://doi.org/10.5194/acp-14-11697-2014, 2014
Short summary
Short summary
Black carbon in snow lowers its albedo, increasing the absorption of sunlight, leading to positive radiative forcing, climate warming and earlier snow-melt. A series of recent studies have used prescribed rates of black carbon deposition to snow to assess the climate effects of black carbon in snow. Here we show that the use of prescribed deposition fluxes in these model studies leads to high biases in snow BC concentrations, caused by the decoupling of BC and snow deposition to the surface.
J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick
The Cryosphere, 8, 2031–2045, https://doi.org/10.5194/tc-8-2031-2014, https://doi.org/10.5194/tc-8-2031-2014, 2014
C. Zhao, Z. Hu, Y. Qian, L. Ruby Leung, J. Huang, M. Huang, J. Jin, M. G. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, https://doi.org/10.5194/acp-14-11475-2014, 2014
H. J. Langford, T. D. L. Irvine-Fynn, A. Edwards, S. A. Banwart, and A. J. Hodson
Biogeosciences, 11, 5365–5380, https://doi.org/10.5194/bg-11-5365-2014, https://doi.org/10.5194/bg-11-5365-2014, 2014
E. C. Lawson, J. L. Wadham, M. Tranter, M. Stibal, G. P. Lis, C. E. H. Butler, J. Laybourn-Parry, P. Nienow, D. Chandler, and P. Dewsbury
Biogeosciences, 11, 4015–4028, https://doi.org/10.5194/bg-11-4015-2014, https://doi.org/10.5194/bg-11-4015-2014, 2014
H. C. Price, B. J. Murray, J. Mattsson, D. O'Sullivan, T. W. Wilson, K. J. Baustian, and L. G. Benning
Atmos. Chem. Phys., 14, 3817–3830, https://doi.org/10.5194/acp-14-3817-2014, https://doi.org/10.5194/acp-14-3817-2014, 2014
C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014, https://doi.org/10.5194/acp-14-2399-2014, 2014
A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones
The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014, https://doi.org/10.5194/tc-8-107-2014, 2014
D. T. Shindell, J.-F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P. J. Young, Y. H. Lee, L. Rotstayn, N. Mahowald, G. Milly, G. Faluvegi, Y. Balkanski, W. J. Collins, A. J. Conley, S. Dalsoren, R. Easter, S. Ghan, L. Horowitz, X. Liu, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. Skeie, K. Sudo, S. Szopa, T. Takemura, A. Voulgarakis, J.-H. Yoon, and F. Lo
Atmos. Chem. Phys., 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013, https://doi.org/10.5194/acp-13-2939-2013, 2013
Y. H. Lee, J.-F. Lamarque, M. G. Flanner, C. Jiao, D. T. Shindell, T. Berntsen, M. M. Bisiaux, J. Cao, W. J. Collins, M. Curran, R. Edwards, G. Faluvegi, S. Ghan, L. W. Horowitz, J. R. McConnell, J. Ming, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. B. Skeie, K. Sudo, T. Takemura, F. Thevenon, B. Xu, and J.-H. Yoon
Atmos. Chem. Phys., 13, 2607–2634, https://doi.org/10.5194/acp-13-2607-2013, https://doi.org/10.5194/acp-13-2607-2013, 2013
K. M. Sterle, J. R. McConnell, J. Dozier, R. Edwards, and M. G. Flanner
The Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013, https://doi.org/10.5194/tc-7-365-2013, 2013
C. L. Ryder, E. J. Highwood, P. D. Rosenberg, J. Trembath, J. K. Brooke, M. Bart, A. Dean, J. Crosier, J. Dorsey, H. Brindley, J. Banks, J. H. Marsham, J. B. McQuaid, H. Sodemann, and R. Washington
Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, https://doi.org/10.5194/acp-13-303-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Field Studies
Ice plate deformation and cracking revealed by an in situ-distributed acoustic sensing array
A field study on ice melting and breakup in a boreal lake, Pääjärvi, in Finland
Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site
Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica
Pore morphology of polar firn around closure revealed by X-ray tomography
Jun Xie, Xiangfang Zeng, Chao Liang, Sidao Ni, Risheng Chu, Feng Bao, Rongbing Lin, Benxin Chi, and Hao Lv
The Cryosphere, 18, 837–847, https://doi.org/10.5194/tc-18-837-2024, https://doi.org/10.5194/tc-18-837-2024, 2024
Short summary
Short summary
Seismology can help study the mechanism of disintegration of floating ice plates. We conduct a seismic experiment on a frozen lake using a distributed acoustic sensing array. Icequakes and low-frequency events are detected with an artificial intelligence method. Our study demonstrates the merit of distributed acoustic sensing array in illuminating the internal failure process and properties of the ice shelf, which eventually contributes to the understanding and prediction of ice shelf collapse.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Alexis Burr, Clément Ballot, Pierre Lhuissier, Patricia Martinerie, Christophe L. Martin, and Armelle Philip
The Cryosphere, 12, 2481–2500, https://doi.org/10.5194/tc-12-2481-2018, https://doi.org/10.5194/tc-12-2481-2018, 2018
Short summary
Short summary
Three-dimensional imaging of the pore network of polar firn from Antarctica was realized in order to relate the morphological evolution of pores with their progressive closure with depth. Evaluating the closed porosity was found to be very dependent on the size of samples and image reconstructions. A connectivity index, which is a parameter less dependent on such issues, was proposed and proved to accurately predict the close-off depths and densities of two polar sites.
Cited articles
Bamber, J., Westaway, R. M., Marzeion, B., and Wouters, B.: The land ice
contribution to sea level during the satellite era, Environ. Res.
Lett., 13 063008, https://doi.org/10.1088/1748-9326/aac2f0, 2018.
Benning, L. G., Anesio, A. M., Lutz, S., and Tranter, M.: Biological impact
on Greenland's albedo, Nat. Geosci., 7, 691, https://doi.org/10.1038/ngeo2260,
2014.
Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G.,
Ghirardi, M., Gunner, M. R., Junge, W., Kramer, D. M., Melis, A., Moore, T. A., Moser, C. C., Nocera, D. G., Nozik, A. J., Ort, D. R., Parson, W. W., Prince, R. C., and Sayre, R. T.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement, Science, 332, 805–809, 2011.
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The ablation zone in northeast Greenland: ice types, albedos and impurities, J.
Glaciol., 56, 101–113, 2010.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012.
Brock, B. W. and Arnold, N. S.: A spreadsheet-based (Microsoft Excel) point
surface energy balance model for glacier and snow melt studies, Earth
Surf. Proc. Land., 25, 649–658.
https://doi.org/10.1002/1096-9837(200006)25:6<649::aid-esp97>3.0.co;2-u, 2000.
Cook, J. M., Edwards, A., Irvine-Fynn, T. D. I., and Takeuchi, N.: Cryoconite: Dark biological secret of the cryosphere, Prog. Phys. Geog., 40, 66–111, https://doi.org/10.1177/0309133315616574, 2015a.
Cook, J. M., Edwards, A., and Hubbard, A.: Biocryomorphology: Integrating
Microbial Processes with Ice Surface Hydrology, Topography, and Roughness,
Front. Earth Sci., 3, 78, https://doi.org/10.3389/feart.2015.00078, 2015b.
Cook, J. M., Hodson, A. J., Taggart, A. J., Mernild, S. H., and Tranter, M.:
A predictive model for the spectral “bioalbedo” of snow, J. Geophys.
Res.-Earth Surf., 122, 434–454, https://doi.org/10.1002/2016JF003932,
2017a.
Cook, J. M., Hodson, A. J., Gardner, A. S., Flanner, M., Tedstone, A. J., Williamson, C., Irvine-Fynn, T. D. L., Nilsson, J., Bryant, R., and Tranter, M.: Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo, The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, 2017b.
Cook, J. M.: Spectra Processing Codes, Zenodo, https://doi.org/10.5281/zenodo.2598219, last access: January 2020.
Cook, J. M., Williamson, C., Tedstone, A. J., McCutcheon, J., and Flanner, M.: BioSNICAR-GO, Zenodo, https://doi.org/10.5281/zenodo.3564517, last access: January 2020a.
Cook, J. M., Tedstone, A. J., Williamson, A. J., and McCutcheon, J.: Ice surface classifiers, Zenodo, https://doi.org/10.5281/zenodo.3564529, last access: January 2020b.
Cook, J. M., Tedstone, A. J., Williamson, C., and McCutcheon, J.: Field and associated data, Zenodo, https://doi.org/10.5281/zenodo.3564501, last access: January 2020c.
Dauchet, J., Blanco, S., Cornet, J.-F., and Fournier, R.: Calculation of radiative properties of photnthetic microorganisms, J. Quant.
Spectrosc. Ra., 161, 60–84, 2015.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dial, R., Ganey, G., and Skiles, S. M.: What colour should glacier algae be? An ecological role for red carbon in the cryosphere, FEMS Microbiol. Ecol., 94, fiy2007, https://doi.org/10.1093/femsec/fiy007, 2018.
Egan, W. G. and Hilgeman, T. W.: Optical properties of inhomogenous materials: applications to geology, astronomy, chemistry and engineering, Academic Press, San Diego, USA, ISBN: 0122326504, 1979.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black carbon in snow, J.
Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Ganey, G. Q., Loso, M. G., Burgess, A. B., and Dial, R. J.: The role of microbes in
snowmelt and radiative forcing on an Alaskan icefield, Nat. Geosci.,
10, 754–759, https://doi.org/10.1038/ngeo3027, 2017.
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software
Library, Open Source Geospatial Foundation, available at: https://gdal.org/ (last access: January 2020),
2019.
Green, R. O., Dozier, J., Roberts, D., and Painter, T. H.: Spectral
snow-reflectance models for grain size and liquid water fraction in melting
snow for the solar reflected spectrum, Ann. Glaciol., 34, 71–73, 2002.
Greene, C. A., Gwyther, D. E., and Blankenship, D. D.: Antarctic Mapping Tools for Matlab, Comput. Geosci., 104, 151–157,
https://doi.org/10.1016/j.cageo.2016.08.003. 2017.
Haardt, H. and Maske, H.: Specific in vivo absorption coefficient of
chlorophyll a at 675 nm, Limnol. Oceanogr., 32, 608–619, 1987.
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweiss, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P., and Zwally, J.: Ice sheet mass balance and climate change. Nature, 498,
51–59, https://doi.org/10.1038/nature12238, 2013.
Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., and Zohary, T.: Biovolume calculation for pelagic and benthic microalgae, J.
Phycol., 35, 403–24, 1999.
Howat, I.: MEaSUREs Greenland Ice Mapping Project (GIMP) Land Ice and Ocean Classification Mask, Version 1., NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/B8X58MQBFUPA (last access: August 2018), 2017.
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Hu, W.: Dry weight and cell density of individual algal and
cyanobacterial cells for algae research and development, PhD thesis,
University of Missouri-Columbia, available at:
https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/46477/research.pdf (last access: September 2019), 2014.
Huovinen, P., Ramirez, J., and Gomez, I.: Remote sensing of albedo-reducing snow
algae and impurities in the Maritime Antarctic, ISPRS J. Photogramm., 146, 507–517, 2018.
Jäger, C., Fabian, D., Schrempel, F., Dorschner, J., Henning, T., and Wesch,
W.: Structural processing of enstatite by ion bombardement, Astron.
Astrophys. 401, 57–65, https://doi.org/10.1051/0004-6361:20030002, 2003.
Jonsell, U., Hock, R., and Holmgren, B.: Spatial and temporal variations in
albedo on Storglaciären, Sweden, J. Glaciol., 49, 59–68,
https://doi.org/10.3189/172756503781830980, 2003.
Kirk, J. T. O.: A theoretical analysis of the contribution of algal cells to
the attenuation of light within natural waters III. Cylindrical and
spheroidal cells, New Phytol., 77, 341–358, 1976.
Knap, W. H., Brock, B. W., Oerlemans, J., and Willis, I. C.: Comparison of Landsat TM- derived and ground-based albedos of Haut Glacier d'Arolla, Switzerland, Int. J. Remote Sens., 20, 3293–3310, 1999.
Langen, P. L., Fauso, R. S., Vendecrux, B., Mottram, R. H., and Box, J. E.: Liquid
water flow and retention on the Greenland Ice Sheet in the regional climate
model HIRHAM5: local and large scale impacts, Front. Earth Sci., 4, 110,
https://doi.org/10.3389/feart.2016.00110, 2017.
Lee, E. and Pilon, L.: Absorption and scattering by long and randomly oriented linear chains of spheres, J. Opt. Soc. Am., 30, 1892–1900, 2013.
Leya, T.: Fedlstudien und genetische Untersuchungen zur Kyrophilie der
Schneealgen Nordwestspitzbergens, Shaker Verlag, Aachen, 2014.
Liang, S.: Narrowband to broadband conversions of land surface albedo I.
Remote Sens. Environ., 76, 213–238,
https://doi.org/10.1016/S0034-4257(00)00205-4, 2001.
Lutz, S., Anesio, A. M., Jorge Villar, S. E., Benning, L. G.: Variations of algal
communities cause darkening of a Greenland glacier, FEMS Microbiol. Ecol., 89, 402–414, https://doi.org/10.1111/1574-6941.12351, 2014.
Lutz, S., McCutcheon, J., McQuaid, J. B., and Benning, L. G.: The diversity of ice
algal communities on the Greenland Ice Sheet revealed by oligotyping,
Microb. Genom., 4, 1–10, https://doi.org/10.1099/mgen.0.000159, 2018.
Masojídek, J., Torzillo, G., and Koblížek, M.: Photosynthesis in Microalgae, in: Handbook of Microalgal Culture, edited by: Richmond, A. and Hu, Q., John Wiley and Sons, Ltd., https://doi.org/10.1002/9781118567166.ch2, 2013.
McCutcheon, J., Lutz, S., Williamson, C., Cook, J. M., Tedstone, A. J., Vanderstraeten, A., Wilson, S. A., Stockdale, A., Bonneville, S., McQuaid, J. B., Tranter, M., and Benning, L. G.: Mineral phosphorous drives glacier algal blooms on the Greenland Ice Sheet, in preparation, 2020.
Micasense: Red-Edge camera radiometric calibration model, available at:
https://support.micasense.com/hc/en-us/articles/115000351194-RedEdge-Camera-Radiometric-Calibration-Model (last access: November 2018),
2019.
Morel, A. and Bricaud, A.: Theoretical results concerning light absorption
in a discrete medium, and application to specific absorption of
phytoplankton, Deep-Sea Res., 28, 1375–1393, 1981.
Muller, F. and Keeler, C. M.: Errors in short term ablation measurements on
melting ice surfaces, J. Glaciol., 8, 91–105, 1969.
Ngheim, S. V., Hall, D. K., Mote, T. L., Tedesco, M. Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt across the Greenland Ice Sheet in 2012, Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611, 2012.
Nitsche, R. and Fritz, T.: Precise determination of the complex optical constant
of mica, Appl. Opt., 43, 3263, https://doi.org/10.1364/ao.43.003263, 2004.
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., and van den Broeke, M. R.: A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015), The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, 2016.
Nordenskiöld, A. E.: Cryoconite found 1870, 19–25 July, on theinland
ice, east of Auleitsivik Fjord, Disco Bay, Greenland, Geol. Mag., 2,
157–162, 1875.
OCDB: Optical Constants Database, Laboratory Astrophysics Group of the AIU
Jena, Stubachtal Olivine dataset, available at:
https://www.astro.uni-jena.de/Laboratory/OCDB/data/silicate/crystalline/oliv_vis.txt (last access: November 2019), 2002.
Osborne, M.: Ardupilot Mission Planner (v1.3.48), available at: https://ardupilot.org/ardupilot/index.html, 2017.
Painter, T. H., Duval, B., and Thomas, W. H.: Detection and quantification
of snow algae with an airborne imaging spectrometer, Appl. Environ.
Microbiol., 67, 5267–5272,
https://doi.org/10.1128/AEM.67.11.5267-5272.2001, 2001.
Pollack, J. B., Toon, O. B., and Khare, B. K.: Optical properties of some
terrestrial rocks and glasses, Icarus, 19, 372–389, 1973.
Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H., and Lutz, C.:
Characterization of an UV- and VIS-absorbing, purpurogallin-derived
secondary pigment new to algae and highly abundant in Mesotaenium berggrenii
(Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers, FEMS
Microbiol. Ecol., 79, 638–648,
https://doi.org/10.1111/j.1574-6941.2011.01245.x, 2012.
Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P.,
Flaud, J.-M., Perrin, A., Camy-Peyrey, C., Dana, V., Mandin, J.-Y.,
Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yohino, K., Chance, K. V., Jucks, K. W., Brown, L. R., Nemtchinov, V., and Varanasi, P.: The HITRAN
molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation):
1996 edition, J. Quant. Spectrosc. Ra.,
60, 665–710, https://doi.org/10.1016/S0022-4073(98)00078-8,
1998.
Roush, T., Pollack, J., and Orenberg, J.: Derivation of midinfrared (5-25 µm) optical constants of some silicates and palagonite, Icarus, 94, 191–208,
1991.
Ryan, J., Hubbard, A., Irvine-Fynn, T. D., Doyle, S. ., Cook, J. M., Stibal,
M., and Box, J. E.: How robust are in situ observations for validating
satellite-derived albedo over the dark zone of the Greenland Ice Sheet?,
Geophys. Res. Lett., 44, 6218–6225, 2017.
Ryan, J., Hubbard, A., Irvine-Fynn, Cook, J. T., Smith, L. C., Cameron, K., and Box, J. E.: Dark zone of the Greenland Ice Sheet controlled by distributed
biologically-active impurities, Nat. Commun., 9, 1065, https://doi.org/10.1038/s41467-018-03353-2, 2018a.
Ryan, J., van As, D., Cooley, S. W., Cooper, M. G., Pitcher, L. H., and Hubbard,
A.: Greenland Ice Sheet surface melt amplified by snow line migration and
bare ice exposure, Sci. Adv., 5, eeav3738, https://doi.org/10.1126/sciadv.aav3738, 2018b.
Sanna, L. and Romeo, A.: Mineralogy and geochemistry of cryoconite sediments in
Eqip Sermia glacier (central-west Greenland), J. Mediterr. Earth
Sci., 10, 159–166, 2018.
Seager, S., Turner, E. L., Schafer, J., and Ford, E. B.: Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants,
Astrobiology, 5, 372–390, 2005.
Shepherd, A., Ivins, E. R., Barletta, V. R., Bentley, M. J., Bettadpur, S.,
Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J.,
Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister,
R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A.
J., Pritchard, H., Rignot, E., Rott, H., Sohn, H.G. Rensen, L. S., Scambos,
T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van
Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G.,
Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young,
D., and Zwally, H. J.: A Reconciled Estimate of Ice-Sheet Mass Balance, Science,
338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Shimada, R., Takeuchi, N., and Aoki, T.: Inter-annual and geographical
variations in the extent of bare ice and dark ice on the Greenland ice sheet
derived from MODIS satellite images, Front. Earth Sci., 4, 43,
https://doi.org/10.3389/feart.2016.00043, 2016.
Skiles, S. M., Painter, T. H., and Okin, G. S.: A method to retrieve the
spectral complex refractive index and single scattering optical properties
of dust deposited in mountain snow, J. Glaciol., 63, 133–147,
https://doi.org/10.1017/jog.2016.126, 2017.
Smeets, C. J. P. P. and Van den Broeke, M. R.: Temporal and spatial variations
of the aerodynamic roughness length in the ablation zone of the Greenland
ice sheet, Bound.-Lay. Meteorol., 128, 315–338,
https://doi.org/10.1007/s10546-008-9291-0, 2008.
Stibal, M., Box, J. E., Cameron, K. A., Langen, P. L., Yallop, M., Mottram,
R. H., Khan, A. L., Molotch, N. P., Chrismas, N. A. M., Quaglia, F. C., Remias, D., Smeets, C. J. P., van den Broecke, M. R., Ryan, J. C., Hubbard, A., Tranter, M., van As, D., and Ahlstrøm, A. P.: Algae drive enhanced darkening of bare ice on the Greenland Ice Sheet, Geophys. Res. Lett., 44, 11463–11471, 2017.
Stroeve, J., Box, J. E., Wang, Z., Schaaf, C., and Barett, A.: Re-evaluation of
MODIS MCD43 Greenland albedo accuracy and trends, Remote Sens.
Environ., 138, 99–214. https://doi.org/10.1016/j.rse.2013.07.023, 2013.
Takeuchi, N., Dial, R., Kohshima, S., Segawa, T., and Uetake, J.: Spatial
distribution and abundance of red snow algae on the Harding Icefield, Alaska
derived from a satellite image, Geophys. Res. Lett., 33, L21502,
https://doi.org/10.1029/2006GL027819, 2006.
Tedesco, M., Foreman, C., Anton, J., Steiner, N., and Schwartzman, T.:
Comparative analysis of morphological, mineralogical and spectral properties
of cryoconite in Jakobshavn Isbræ, Greenland, and Canada Glacier,
Antarctica, Ann. Glaciol., 54, 147–157, https://doi.org/10.3189/2013AoG63A417, 2013.
Tedesco, M., Doherty, S., Fettweis, X., Alexander, P., Jeyaratnam, J., and Stroeve, J.: The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100), The Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016, 2016.
Tedstone, A. J.: Python implementation of point surface energy balance model, Zenodo, https://doi.org/10.5281/zenodo.3228331, 2019.
Tedstone, A. J., Bamber, J. L., Cook, J. M., Williamson, C. J., Fettweis, X., Hodson, A. J., and Tranter, M.: Dark ice dynamics of the south-west Greenland Ice Sheet, The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, 2017.
Tedstone, A. J., Cook, J. M., Williamson, C. J., Hofer, S., McCutcheon, J., Irvine-Fynn, T., Gribbin, T., and Tranter, M.: Algal growth and weathering crust structure drive variability in Greenland Ice Sheet ice albedo, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-131, in review, 2019.
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid calculation
of radiative heating rates and photodissociation rates in inhomogeneous
multiple scattering atmospheres, J. Geophys. Res., 94, 16287–16301,
https://doi.org/10.1029/JD094iD13p16287, 1989.
Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H., and Kohshima, S.:
Communities of algae and cyanobacteria on glaciers in west Greenland, Polar
Sci., 4, 71–80, https://doi.org/10.1016/j.polar.2010.03.002,
2010.
United States Geological Survey (USGS): Unmanned Aircraft Systems data
post-processing: Structure from motion photogrammetry, available at:
https://uas.usgs.gov/nupo/pdf/PhotoScanProcessingMicaSenseMar2017.pdf (last access: May 2018), 2017.
van As, D., Van den Broeke, M. R., Reijmer, C. H., and Vande Wal, R. S. W.:
The summer surface energy balance of the high Antarctic Plateau, Bound.-Lay.
Meteorol., 115, 289–317, https://doi.org/10.1007/s10546-004-4631-1, 2005.
van As, D., Hubbard, A. L., Hasholt, B., Mikkelsen, A. B., van den Broeke, M. R., and Fausto, R. S.: Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations, The Cryosphere, 6, 199–209, https://doi.org/10.5194/tc-6-199-2012, 2012.
van As, D., Bech Mikkelsen, A., Holtegaard Nielsen, M., Box, J. E., Claesson Liljedahl, L., Lindbäck, K., Pitcher, L., and Hasholt, B.: Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release, The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, 2017.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
van Diedenhoven, B., Ackerman, A. S., Cairns, B., and Fridlind, A. M.: A flexible
paramaterization for shortwave optical properties of ice crystals, J. Atmos. Sci., 71, 1763–1782, https://doi.org/10.1175/JAS-D-13-0205.1,
2014.
Wang, S., Tedesco, M., Xu, M., and Alexander, P. M.: Mapping ice algal
blooms in southwest Greenland from space, Geophys. Res. Lett., 45, 11779–11788, https://doi.org/10.1029/2018GL080455, 2018.
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89,
https://doi.org/10.1029/RG020i001p00067, 1982.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113, D14220, https://doi.org/10.1029/2007JD009744,2008, 2008.
Wharton, R. A., McKay, C. P., Simmons, G. M., and Parker, B. C.: Cryoconite holes on glaciers, BioScience, 35, 499–503, 1985.
Wientjes, I. G. M. and Oerlemans, J.: An explanation for the dark region in the western melt zone of the Greenland ice sheet, The Cryosphere, 4, 261–268, https://doi.org/10.5194/tc-4-261-2010, 2010.
Wientjes, I. G. M., Van de Wal, R. S. W., Reichart, G. J., Sluijs, A., and Oerlemans, J.: Dust from the dark region in the western ablation zone of the Greenland ice sheet, The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, 2011.
Williamson, C. J., Anesio, A. M., Cook, J., Tedstone, A., Poniecka, E.,
Holland, A., Fagan, D., Tranter, M., and Yallop, M. L.: Ice algal bloom
development on the surface of the Greenland Ice Sheet, FEMS Microbiology
Ecology, fiy025, https://doi.org/10.1093/femsec/fiy02, 2018.
Williamson, C. J., Cameron, K. A., Cook, J. M., Zarsky, J. D., Stibal, M., and Edwards, A.: Glacier Algae: A Dark Past and a Darker Future, Front. Microbiol., 10, 524, https://doi.org/10.3389/fmicb.2019.00524, 2019.
Yallop, M. L., Anesio, A. J., Perkins, R. G., Cook, J., Telling, J., Fagan,
D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter,
M., Wadham, J., and Roberts, N. W.: Photophysiology and albedo-changing
potential of the ice-algal community on the surface of the Greenland ice
sheet, ISME J., 6, 2302–2313, 2012.
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise...