Articles | Volume 14, issue 6
The Cryosphere, 14, 1779–1794, 2020
https://doi.org/10.5194/tc-14-1779-2020
The Cryosphere, 14, 1779–1794, 2020
https://doi.org/10.5194/tc-14-1779-2020
Research article
03 Jun 2020
Research article | 03 Jun 2020

Radar measurements of blowing snow off a mountain ridge

Benjamin Walter et al.

Related authors

Automated avalanche mapping from SPOT 6/7 satellite imagery: results, evaluation, potential and limitations
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-80,https://doi.org/10.5194/tc-2022-80, 2022
Preprint under review for TC
Short summary
Large-scale risk assessment on snow avalanche hazard in alpine regions
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-112,https://doi.org/10.5194/nhess-2022-112, 2022
Preprint under review for NHESS
Short summary
The impact of terrain model source and resolution on snow avalanche modelling
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-97,https://doi.org/10.5194/nhess-2022-97, 2022
Preprint under review for NHESS
Short summary
Spatially continuous snow depth mapping by airplane photogrammetry for annual peak of winter from 2017 to 2021
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-65,https://doi.org/10.5194/tc-2022-65, 2022
Preprint under review for TC
Short summary
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022,https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Atmospheric Interactions
On the energy budget of a low-Arctic snowpack
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022,https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
The role of sublimation as a driver of climate signals in the water isotope content of surface snow: laboratory and field experimental results
Abigail G. Hughes, Sonja Wahl, Tyler R. Jones, Alexandra Zuhr, Maria Hörhold, James W. C. White, and Hans Christian Steen-Larsen
The Cryosphere, 15, 4949–4974, https://doi.org/10.5194/tc-15-4949-2021,https://doi.org/10.5194/tc-15-4949-2021, 2021
Short summary
Synoptic control on snow avalanche activity in central Spitsbergen
Holt Hancock, Jordy Hendrikx, Markus Eckerstorfer, and Siiri Wickström
The Cryosphere, 15, 3813–3837, https://doi.org/10.5194/tc-15-3813-2021,https://doi.org/10.5194/tc-15-3813-2021, 2021
Short summary
Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021,https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020,https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary

Cited articles

Aksamit, N. O. and Pomeroy, J. W.: Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms, The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, 2016. 
Armstrong, R. L. and Brun, E.: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, 222 pp., 2008. 
Bagnold, R. W.: The Physics of Blown Sand and Desert Dunes. Methuen, London, 1941. 
Benassi, F., Dall'Asta, E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R. and Santise, M.: Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation, Remote Sensing, 9, 172, https://doi.org/10.3390/rs9020172, 2017. 
Download
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.