Articles | Volume 14, issue 1
The Cryosphere, 14, 17–37, 2020
https://doi.org/10.5194/tc-14-17-2020
The Cryosphere, 14, 17–37, 2020
https://doi.org/10.5194/tc-14-17-2020
Research article
09 Jan 2020
Research article | 09 Jan 2020

Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf

Sebastian H. R. Rosier and G. Hilmar Gudmundsson

Related authors

Predicting ocean-induced ice-shelf melt rates using a machine learning image segmentation approach
Sebastian Harry Reid Rosier, Christopher Y. S. Bull, and G. Hilmar Gudmundsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-396,https://doi.org/10.5194/tc-2021-396, 2022
Preprint under review for TC
Short summary
Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021,https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
The tipping points and early warning indicators for Pine Island Glacier, West Antarctica
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021,https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 12, 1699–1713, https://doi.org/10.5194/tc-12-1699-2018,https://doi.org/10.5194/tc-12-1699-2018, 2018
Short summary
Strong tidal variations in ice flow observed across the entire Ronne Ice Shelf and adjoining ice streams
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860, https://doi.org/10.5194/essd-9-849-2017,https://doi.org/10.5194/essd-9-849-2017, 2017
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ocean Interactions
The impact of tides on Antarctic ice shelf melting
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022,https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Layered seawater intrusion and melt under grounded ice
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022,https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
The Antarctic Coastal Current in the Bellingshausen Sea
Ryan Schubert, Andrew F. Thompson, Kevin Speer, Lena Schulze Chretien, and Yana Bebieva
The Cryosphere, 15, 4179–4199, https://doi.org/10.5194/tc-15-4179-2021,https://doi.org/10.5194/tc-15-4179-2021, 2021
Short summary
Surface emergence of glacial plumes determined by fjord stratification
Eva De Andrés, Donald A. Slater, Fiamma Straneo, Jaime Otero, Sarah Das, and Francisco Navarro
The Cryosphere, 14, 1951–1969, https://doi.org/10.5194/tc-14-1951-2020,https://doi.org/10.5194/tc-14-1951-2020, 2020
Short summary
Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020,https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary

Cited articles

Alley, S. A. R. B.: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102, 15813–15196, https://doi.org/10.1029/97JB01073, 1997. a
Anandakrishnan, S., Voigt, D. E., and Alley, R. B.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30, 1361, https://doi.org/10.1029/2002GL016329, 2003. a
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, https://doi.org/10.3189/002214310792447699, 2010. a, b, c
Bindschadler, R. A., King, M. A., Alley, R. B., Anandakrishnan, S., and Padman, L.: Tidally controlled stick-slip discharge of a West Antasrctic ice stream, Science, 301, 1087–1089, https://doi.org/10.1126/science.1087231, 2003. a
Borstad, C. P., Rignot, E., Mouginot, J., and Schodlok, M. P.: Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf, The Cryosphere, 7, 1931–1947, https://doi.org/10.5194/tc-7-1931-2013, 2013. a
Download
Short summary
The flow of ice shelves is now known to be strongly affected by ocean tides, but the mechanism by which this happens is unclear. We use a viscoelastic model to try to reproduce observations of this behaviour on the Filchner–Ronne Ice Shelf in Antarctica. We find that tilting of the ice shelf explains the short-period behaviour, while tidally induced movement of the grounding line (the boundary between grounded and floating ice) explains the more complex long-period response.