Articles | Volume 14, issue 5
https://doi.org/10.5194/tc-14-1673-2020
https://doi.org/10.5194/tc-14-1673-2020
Research article
 | 
27 May 2020
Research article |  | 27 May 2020

Ice shelf rift propagation: stability, three-dimensional effects, and the role of marginal weakening

Bradley Paul Lipovsky

Related authors

Measurement of Ice Shelf Rift Width with ICESat-2 Laser Altimetry: Automation, Validation, and the behavior of Halloween Crack, Brunt Ice Shelf, East Antarctica
Ashley Morris, Bradley P. Lipovsky, Catherine C. Walker, and Oliver J. Marsh
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-63,https://doi.org/10.5194/tc-2023-63, 2023
Revised manuscript has not been submitted
Short summary
Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath
Anne Schöpa, Wei-An Chao, Bradley P. Lipovsky, Niels Hovius, Robert S. White, Robert G. Green, and Jens M. Turowski
Earth Surf. Dynam., 6, 467–485, https://doi.org/10.5194/esurf-6-467-2018,https://doi.org/10.5194/esurf-6-467-2018, 2018
Short summary
Tremor during ice-stream stick slip
B. P. Lipovsky and E. M. Dunham
The Cryosphere, 10, 385–399, https://doi.org/10.5194/tc-10-385-2016,https://doi.org/10.5194/tc-10-385-2016, 2016
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
The importance of cloud properties when assessing surface melting in an offline-coupled firn model over Ross Ice shelf, West Antarctica
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024,https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024,https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024,https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Extreme melting at Greenland's largest floating ice tongue
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
The Cryosphere, 18, 1333–1357, https://doi.org/10.5194/tc-18-1333-2024,https://doi.org/10.5194/tc-18-1333-2024, 2024
Short summary
The complex basal morphology and ice dynamics of the Nansen Ice Shelf, East Antarctica
Christine F. Dow, Derek Mueller, Peter Wray, Drew Friedrichs, Alexander L. Forrest, Jasmin B. McInerney, Jamin Greenbaum, Donald D. Blankenship, Choon Ki Lee, and Won Sang Lee
The Cryosphere, 18, 1105–1123, https://doi.org/10.5194/tc-18-1105-2024,https://doi.org/10.5194/tc-18-1105-2024, 2024
Short summary

Cited articles

Ang, D., Folias, E., and Williams, M.: The bending stress in a cracked plate on an elastic foundation', J. Appl. Mechan., 30, 245–251, 1963. a
Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., Höppner, K., and the Science Team of Expedition PS104: Bathymetric controls on calving processes at Pine Island Glacier, The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, 2018. a
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, 2013. a, b
Bažant, Z. P.: Large-scale thermal bending fracture of sea ice plates, J. Geophys. Res.-Oceans, 97, 17739–17751, 1992. a, b
Borstad, C., McGrath, D., and Pope, A.: Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity, Geophys. Res. Lett., 44, 4186–4194, 2017. a
Download
Short summary
Ice shelves promote the stability of marine ice sheets and therefore reduce the ice sheet contribution to sea level rise. Ice shelf rifts are through-cutting fractures that jeopardize this stabilizing tendency. Here, I carry out the first-ever 3D modeling of ice shelf rifts. I find that the overall ice shelf geometry – particularly the ice shelf margins – alters rift stability. This work paves the way to a more realistic depiction of rifting in ice sheet models.