Articles | Volume 13, issue 1
https://doi.org/10.5194/tc-13-29-2019
https://doi.org/10.5194/tc-13-29-2019
Research article
 | 
08 Jan 2019
Research article |  | 08 Jan 2019

Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography

Matthew Olson and Summer Rupper

Related authors

The Ant-Iso dataset: a compilation of Antarctic surface snow isotopic observations
Jiajia Wang, Hongxi Pang, Shuangye Wu, Spruce W. Schoenemann, Ryu Uemura, Alexey Ekaykin, Martin Werner, Alexandre Cauquoin, Sentia Goursaud Oger, Summer Rupper, and Shugui Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-384,https://doi.org/10.5194/essd-2022-384, 2022
Revised manuscript not accepted
Short summary
Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery
Joshua M. Maurer, Summer B. Rupper, and Joerg M. Schaefer
The Cryosphere, 10, 2203–2215, https://doi.org/10.5194/tc-10-2203-2016,https://doi.org/10.5194/tc-10-2203-2016, 2016
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023,https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023,https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary
Halving of Swiss glacier volume since 1931 observed from terrestrial image photogrammetry
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022,https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Land- to lake-terminating transition triggers dynamic thinning of a Bhutanese glacier
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere, 16, 2643–2654, https://doi.org/10.5194/tc-16-2643-2022,https://doi.org/10.5194/tc-16-2643-2022, 2022
Short summary
Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes
Nicole Schaffer and Shelley MacDonell
The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022,https://doi.org/10.5194/tc-16-1779-2022, 2022
Short summary

Cited articles

Aguilar, C., Herrero, J., and Polo, M. J.: Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale, Hydrol. Earth Syst. Sci., 14, 2479–2494, https://doi.org/10.5194/hess-14-2479-2010, 2010. 
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res., 111, F02011, https://doi.org/10.1029/2005JF000426, 2006. 
Bajracharya, S. R. and Shrestha, B. R.: The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD), 2011. 
Chen, X., Su, Z., Ma, Y., Yang, K., and Wang, B.: Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau, Hydrol. Earth Syst. Sci., 17, 1607–1618, https://doi.org/10.5194/hess-17-1607-2013, 2013. 
Download
Short summary
Solar radiation is the largest energy input for most alpine glaciers. However, many models oversimplify the influence of topographic shading. Also, no systematic studies have explored the variable impact of shading on glacier ice. We find that shading can significantly impact modeled solar radiation, particularly at low elevations, at high latitudes, and for glaciers with a north/south orientation. Excluding the effects of shading will overestimate modeled solar radiation for alpine glaciers.