Articles | Volume 13, issue 9
https://doi.org/10.5194/tc-13-2511-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-2511-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Helmut Rott
ENVEO IT GmbH, Innsbruck, Austria
Institute of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innsbruck, Austria
Dana Floricioiu
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Jan Wuite
ENVEO IT GmbH, Innsbruck, Austria
Nuno Miranda
European Space Agency (ESA) – ESRIN, Frascati, Italy
Related authors
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-2518, https://doi.org/10.5194/egusphere-2024-2518, 2024
Short summary
Short summary
We developed a robust freeze/thaw detection approach, applying a constant threshold on Copernicus Sentinel-1 data, that is suitable for tundra regions. All global, coarser resolution products, tested with the resulting benchmarking dataset, are of value for freeze/thaw retrieval, although differences were found depending on seasons, in particular during spring and autumn transition.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1499, https://doi.org/10.5194/egusphere-2024-1499, 2024
Short summary
Short summary
In 2022, sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the sea ice was attached to the terminus of the glacier, it could provide a resistive stress against the glacier’s ice-flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the sea ice provided significant support to Crane prior to its disintegration.
Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1108, https://doi.org/10.5194/egusphere-2024-1108, 2024
Short summary
Short summary
Regional climate models are currently the only source for assessing the melt volume on a global scale of the Greenland Ice Sheet. This study compares the modeled melt volume with observations from weather stations and melt extent observed from ASCAT to assess the performance of the models. It highlights the importance of critically evaluating model outputs with high-quality satellite measurements to improve the understanding of variability among models.
Sindhu Ramanath Tarekere, Lukas Krieger, Dana Floricioiu, and Konrad Heidler
EGUsphere, https://doi.org/10.5194/egusphere-2024-223, https://doi.org/10.5194/egusphere-2024-223, 2024
Short summary
Short summary
Grounding lines are geophysical features that divide ice masses on the bedrock and floating ice shelves. Their accurate location is required for calculating the mass balance of ice sheets and glaciers in Antarctica and Greenland. Human experts still manually detect them in satellite-based interferometric radar images, which is inefficient given the growing volume of data. We have developed an artificial intelligence-based automatic detection algorithm to generate Antarctic-wide grounding lines.
Hannah J. Picton, Chris R. Stokes, Stewart S. R. Jamieson, Dana Floricioiu, and Lukas Krieger
The Cryosphere, 17, 3593–3616, https://doi.org/10.5194/tc-17-3593-2023, https://doi.org/10.5194/tc-17-3593-2023, 2023
Short summary
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
Karla Boxall, Frazer D. W. Christie, Ian C. Willis, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 3907–3932, https://doi.org/10.5194/tc-16-3907-2022, https://doi.org/10.5194/tc-16-3907-2022, 2022
Short summary
Short summary
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first evidence for seasonal flow variability of land ice draining to George VI Ice Shelf (GVIIS), Antarctica. Ultimately, our findings imply that other glaciers in Antarctica may be susceptible to – and/or currently undergoing – similar ice-flow seasonality, including at the highly vulnerable and rapidly retreating Pine Island and Thwaites glaciers.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Ludivine Libert, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 1523–1542, https://doi.org/10.5194/tc-16-1523-2022, https://doi.org/10.5194/tc-16-1523-2022, 2022
Short summary
Short summary
Open fractures are important to monitor because they weaken the ice shelf structure. We propose a novel approach using synthetic aperture radar (SAR) interferometry for automatic delineation of ice shelf cracks. The method is applied to Sentinel-1 images of Brunt Ice Shelf, Antarctica, and the propagation of the North Rift, which led to iceberg calving in February 2021, is traced. It is also shown that SAR interferometry is more sensitive to rifting than SAR backscatter and optical imagery.
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
E. Johnson, D. Floricioiu, E. Schwalbe, R. Koschitzki, H.-G. Maas, C. Cardenas, and G. Casassa
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 125–127, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-125-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-125-2020, 2020
L. Krieger, E. Johnson, and D. Floricioiu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 133–136, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-133-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-133-2020, 2020
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
Jan De Rydt, Gudmundur Hilmar Gudmundsson, Thomas Nagler, and Jan Wuite
The Cryosphere, 13, 2771–2787, https://doi.org/10.5194/tc-13-2771-2019, https://doi.org/10.5194/tc-13-2771-2019, 2019
Short summary
Short summary
Two large icebergs are about to break off from the Brunt Ice Shelf in Antarctica. Rifting started several years ago and is now approaching its final phase. Satellite data and computer simulations show that over the past 2 decades, growth of the ice shelf has caused a build-up of forces within the ice, which culminated in its fracture. These natural changes in geometry coincided with large variations in flow speed, a process that is thought to be relevant for all Antarctic ice shelf margins.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Jan De Rydt, G. Hilmar Gudmundsson, Thomas Nagler, Jan Wuite, and Edward C. King
The Cryosphere, 12, 505–520, https://doi.org/10.5194/tc-12-505-2018, https://doi.org/10.5194/tc-12-505-2018, 2018
Short summary
Short summary
We provide an unprecedented view into the dynamics of two active rifts in the Brunt Ice Shelf through a unique set of field observations, novel satellite data products, and a state-of-the-art ice flow model. We describe the evolution of fracture width and length in great detail, pushing the boundaries of both spatial and temporal coverage, and provide a deeper insight into the process of iceberg formation, which exerts an important control over the mass balance of the Antarctic Ice Sheet.
Wolfgang Rack, Matt A. King, Oliver J. Marsh, Christian T. Wild, and Dana Floricioiu
The Cryosphere, 11, 2481–2490, https://doi.org/10.5194/tc-11-2481-2017, https://doi.org/10.5194/tc-11-2481-2017, 2017
Short summary
Short summary
Predicting changes of the Antarctic Ice Sheet involves fully understanding ice dynamics at the transition between grounded and floating ice. We map tidal bending of ice by satellite using InSAR, and we use precise GPS measurements with assumptions of tidal elastic bending to better interpret the satellite signal. It allows us to better define the grounding-line position and to refine the shape of tidal flexure profiles.
J. Zhao and D. Floricioiu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1593–1600, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, 2017
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, https://doi.org/10.5194/gi-5-403-2016, 2016
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern
The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, https://doi.org/10.5194/tc-9-957-2015, 2015
Short summary
Short summary
We present new analysis of satellite data showing the variability of glacier velocities in the Larsen B area, Antarctic Peninsula, back to 1995. Velocity data and estimates of ice thickness are used to derive ice discharge at different epochs. Velocities of the glaciers remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs, and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance.
O. J. Marsh, W. Rack, D. Floricioiu, N. R. Golledge, and W. Lawson
The Cryosphere, 7, 1375–1384, https://doi.org/10.5194/tc-7-1375-2013, https://doi.org/10.5194/tc-7-1375-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Mass Balance Obs
Reanalysis of the longest mass balance series in Himalaya using nonlinear model: Chhota Shigri Glacier (India)
Accumulation by avalanches as significant contributor to the mass balance of a High Arctic mountain glacier
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings
Central Asia's spatiotemporal glacier response ambiguity due to data inconsistencies and regional simplifications
Recent contrasting behaviour of mountain glaciers across the European High Arctic revealed by ArcticDEM data
Characteristics of mountain glaciers in the northern Japanese Alps
Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains
Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra
Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations
Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China
Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada
Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys
Local topography increasingly influences the mass balance of a retreating cirque glacier
Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations
Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016
Mohd Farooq Azam, Christian Vincent, Smriti Srivastava, Etienne Berthier, Patrick Wagnon, Himanshu Kaushik, Arif Hussain, Manoj Kumar Munda, Arindan Mandal, and Alagappan Ramanathan
EGUsphere, https://doi.org/10.5194/egusphere-2024-644, https://doi.org/10.5194/egusphere-2024-644, 2024
Short summary
Short summary
Mass balance series on Chhota Shigri Glacier has been reanalysed by combining the traditional mass balance reanalysis framework and a nonlinear model. The nonlinear model is preferred over traditional glaciological method to compute the mass balances as the former can capture the spatiotemporal variability of point mass balances from a heterogeneous in-situ point mass balance network. The nonlinear model outperforms the traditional method and agrees better with the geodetic estimates.
Bernhard Hynek, Daniel Binder, Michele Citterio, Signe Hillerup Larsen, Jakob Abermann, Geert Verhoeven, Elke Ludewig, and Wolfgang Schöner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-157, https://doi.org/10.5194/tc-2023-157, 2023
Revised manuscript accepted for TC
Short summary
Short summary
A strong avalanche event in winter 2018 caused thick snow deposits on Freya Glacier, a mountain glacier in Northeast Greenland. The avalanche deposits led to positive elevation changes during the study period 2013–2021 and altered the mass balance of the glacier significantly. The eight year mass balance was positive, it would have been negative without avalanches. The contribution from snow avalanches might become more important with rising temperatures in the Arctic.
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023, https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
Short summary
The Glacier Loss Day (GLD) is the day on which all mass gained from the accumulation period is lost, and the glacier loses mass irrecoverably for the rest of the mass balance year. In 2022, the GLD was already reached on 23 June at Hintereisferner (Austria), and this led to a record-breaking mass loss. We introduce the GLD as a gross yet expressive indicator of the glacier’s imbalance with a persistently warming climate.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Martina Barandun and Eric Pohl
The Cryosphere, 17, 1343–1371, https://doi.org/10.5194/tc-17-1343-2023, https://doi.org/10.5194/tc-17-1343-2023, 2023
Short summary
Short summary
Meteorological and glacier mass balance data scarcity introduces large uncertainties about drivers of heterogeneous glacier mass balance response in Central Asia. We investigate the consistency of interpretations derived from various datasets through a systematic correlation analysis between climatic and static drivers with mass balance estimates. Our results show in particular that even supposedly similar datasets lead to different and partly contradicting assumptions on dominant drivers.
Jakub Małecki
The Cryosphere, 16, 2067–2082, https://doi.org/10.5194/tc-16-2067-2022, https://doi.org/10.5194/tc-16-2067-2022, 2022
Short summary
Short summary
This study presents a snapshot of the recent state of small mountain glaciers across the European High Arctic, where severe climate warming has been occurring over the past years. The analysis revealed that this class of ice mass might melt away from many study sites within the coming two to five decades even without further warming. Glacier changes were, however, very variable in space, and some glaciers have been gaining mass, but the exact drivers behind this phenomenon are unclear.
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere, 16, 1091–1106, https://doi.org/10.5194/tc-16-1091-2022, https://doi.org/10.5194/tc-16-1091-2022, 2022
Short summary
Short summary
In recent years, seven glaciers are confirmed in the northern Japanese Alps. However, their mass balance has not been clarified. In this study, we calculated the seasonal and continuous annual mass balance of these glaciers during 2015–2019 by the geodetic method using aerial images and SfM–MVS technology. Our results showed that the mass balance of these glaciers was different from other glaciers in the world. The characteristics of Japanese glaciers provide new insights for earth science.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Feiteng Wang, Xiaoying Yue, Lin Wang, Huilin Li, Zhencai Du, Jing Ming, and Zhongqin Li
The Cryosphere, 14, 2597–2606, https://doi.org/10.5194/tc-14-2597-2020, https://doi.org/10.5194/tc-14-2597-2020, 2020
Short summary
Short summary
How to mitigate the melting of most mountainous glaciers is a disturbing issue for scientists and the public. We chose the Muz Taw Glacier of the Sawir Mountains as our study object. We carried out two artificial precipitation experiments on the glacier to study the role of precipitation in mitigating its melting. The average mass loss from the glacier decreased by over 14 %. We also propose a possible mechanism describing the role of precipitation in mitigating the melting of the glaciers.
Shuang Yi, Chunqiao Song, Kosuke Heki, Shichang Kang, Qiuyu Wang, and Le Chang
The Cryosphere, 14, 2267–2281, https://doi.org/10.5194/tc-14-2267-2020, https://doi.org/10.5194/tc-14-2267-2020, 2020
Short summary
Short summary
High-Asia glaciers have been observed to be retreating the fastest in the southeastern Tibeten Plateau, where vast amounts of glacier and snow feed the streamflow of the Brahmaputra. Here, we provide the first monthly glacier and snow mass balance during 2002–2017 based on satellite gravimetry. The results confirm previous long-term decreases but reveal strong seasonal variations. This work helps resolve previous divergent model estimates and underlines the importance of meltwater.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Chunhai Xu, Zhongqin Li, Huilin Li, Feiteng Wang, and Ping Zhou
The Cryosphere, 13, 2361–2383, https://doi.org/10.5194/tc-13-2361-2019, https://doi.org/10.5194/tc-13-2361-2019, 2019
Short summary
Short summary
We take Urumqi Glacier No. 1 as an example and validate a long-range terrestrial laser scanner (TLS) as an efficient tool for monitoring annual and intra-annual mass balances, especially for inaccessible glacier areas where no glaciological measurements are available. The TLS has application potential for glacier mass-balance monitoring in China. For wide applications of the TLS, we can select some benchmark glaciers and use stable scan positions and in-situ-measured densities of snow–firn.
Ben M. Pelto, Brian Menounos, and Shawn J. Marshall
The Cryosphere, 13, 1709–1727, https://doi.org/10.5194/tc-13-1709-2019, https://doi.org/10.5194/tc-13-1709-2019, 2019
Short summary
Short summary
Changes in glacier mass are the direct response to meteorological conditions during the accumulation and melt seasons. We derived multi-year, seasonal mass balance from airborne laser scanning surveys and compared them to field measurements for six glaciers in the Columbia and Rocky Mountains, Canada. Our method can accurately measure seasonal changes in glacier mass and can be easily adapted to derive seasonal mass change for entire mountain ranges.
Daniel McGrath, Louis Sass, Shad O'Neel, Chris McNeil, Salvatore G. Candela, Emily H. Baker, and Hans-Peter Marshall
The Cryosphere, 12, 3617–3633, https://doi.org/10.5194/tc-12-3617-2018, https://doi.org/10.5194/tc-12-3617-2018, 2018
Short summary
Short summary
Measuring the amount and spatial pattern of snow on glaciers is essential for monitoring glacier mass balance and quantifying the water budget of glacierized basins. Using repeat radar surveys for 5 consecutive years, we found that the spatial pattern in snow distribution is stable over the majority of the glacier and scales with the glacier-wide average. Our findings support the use of sparse stake networks for effectively measuring interannual variability in winter balance on glaciers.
Caitlyn Florentine, Joel Harper, Daniel Fagre, Johnnie Moore, and Erich Peitzsch
The Cryosphere, 12, 2109–2122, https://doi.org/10.5194/tc-12-2109-2018, https://doi.org/10.5194/tc-12-2109-2018, 2018
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Cited articles
Abdel Jaber, W.: Derivation of mass balance and surface velocity of glaciers by
means of high resolution synthetic aperture radar: application to the
Patagonian Icefields and Antarctica, Dissertation, Technische Universität
München, available at: http://elib.dlr.de/109075/ (last access: 18 September 2019), 2016. a, b, c, d, e, f, g, h, i, j
Abdel Jaber, W., Floricioiu, D., Rott, H., and Eineder, M.: Dynamics of fast flowing glaciers in the Patagonia ice fields from TerraSAR-X and TanDEM-X data, in: Proc. of IEEE Int. Geoscience and Remote Sensing Symposium, Munich, Germany, 3226–3229, 21–26 July 2012. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S.,
Bartholomaus, T., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and
Moore, J. C.: Termini of calving glaciers as self-organized critical systems,
Nat. Geosci., 7, 874–878, 2014. a
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, 2007. a
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M.,
Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim
archive, version 2.0, ERA Report Series, p. 23,
available at: https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20 (last access: 18 September 2019),
2011. a, b
Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T.,
Casassa, G., Soruco, A., Skvarca, P., and Seehaus, T. C.: Constraining
glacier elevation and mass changes in South America, Nat. Clim. Change,
9, 130–136, 2019. a
Bravo, C., Quincey, D., Ross, A., Rivera, A., Brock, B., Miles, E., and Silva,
A.: Air Temperature Characteristics, Distribution, and Impact on Modeled
Ablation for the South Patagonia Icefield, J. Geophys. Res.-Atmos., 124, 907–925, 2019. a
Breit, H., Lachaise, M., Balss, U., Rossi, C., Fritz, T., and Niedermeier, A.:
Bistatic and interferometric processing of TanDEM-X data, in: EUSAR 2012; 9th
European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012, 93–96, 2012. a
Brown, C. G., Sarabandi, K., and Pierce, L. E.: Validation of the Shuttle Radar
Topography Mission height data, IEEE Trans. Geosci. Remote
Sens., 43, 1707–1715, 2005. a
Carabajal, C. C. and Harding, D. J.: SRTM C-band and ICESat laser altimetry
elevation comparisons as a function of tree cover and relief, Photogramm. Eng. Rem. S., 72, 287–298, 2006. a
Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D., and Ivins,
E. R.: Patagonia icefield melting observed by gravity recovery and climate
experiment (GRACE), Geophys. Res. Lett., 34, L22501, https://doi.org/10.1029/2007GL031871, 2007. a
Cogley, J. G.: Geodetic and direct mass-balance measurements: comparison and
joint analysis, Ann. Glaciol., 50, 96–100, 2009. a
Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hensley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q., Rosen, P., Shimada, J., Simard, M., and Tung, W.: NASADEM GLOBAL ELEVATION MODEL: METHODS AND PROGRESS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 125–128, https://doi.org/10.5194/isprs-archives-XLI-B4-125-2016, 2016. a
Dall, J.: InSAR elevation bias caused by penetration into uniform volumes, IEEE Trans. Geosci. Remote Sens., 45, 2319–2324, 2007. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The
ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Dietrich, R., Ivins, E., Casassa, G., Lange, H., Wendt, J., and Fritsche, M.:
Rapid crustal uplift in Patagonia due to enhanced ice loss, Earth
Planet. Sci. Lett., 289, 22–29, 2010. a
DLR-CAF: TerraSAR-X Ground Segment – Basic Product Specification Document,
German Aerospace Center (DLR) – Cluster Applied Remote Sensing (CAF), CAF,
DLR, Oberpfaffenhofen, Germany, 1.9 Edn., doc. TX-GS-DD-3302, 2013. a
DLR-EOC: TanDEM-X Ground Segment – DEM Products Specification Document, German
Aerospace Center (DLR) – Earth Observation Center (EOC), EOC, DLR,
Oberpfaffenhofen, Germany, 3.2 Edn.,
available at: https://tandemx-science.dlr.de/ (last access: 18 September 2019), doc. TD-GS-PS-0021, 2018. a
Dowdeswell, J. and Vásquez, M.: Submarine landforms in the fjords of
southern Chile: implications for glacimarine processes and sedimentation in a
mild glacier-influenced environment, Quaternary Sci. Rev., 64, 1–19,
2013. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar
Topography Mission, Rev. Geophys., 45, 1–33, https://doi.org/10.1029/2005RG000183, 2007. a, b, c
Fernández, A. and Mark, B. G.: Modeling modern glacier response to climate
changes along the Andes Cordillera: A multiscale review, J. Adv.
Model. Earth Syst., 8, 467–495, 2016. a
Floricioiu, D. and Rott, H.: Seasonal and short-term variability of
multifrequency, polarimetric radar backscatter of alpine terrain from
SIR-C/X-SAR and AIRSAR data, IEEE Trans. Geosci. Remote
S., 39, 2634–2648, 2001. a
Fritz, T., Rossi, C., Yague-Martinez, N., Rodriguez-Gonzalez, F., Lachaise, M., and Breit, H.: Interferometric processing of TanDEM-X data, in: Proc. of IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2428–2431, 24–29 July 2011. a
Glasser, N. F., Harrison, S., Jansson, K. N., Anderson, K., and Cowley, A.:
Global sea-level contribution from the Patagonian Icefields since the Little
Ice Age maximum, Nat. Geosci., 4, 303–307, 2011. a
Hueso González, J., Bachmann, M., Krieger, G., and Fiedler, H.: Development
of the TanDEM-X calibration concept: analysis of systematic errors, IEEE
Trans. Geosci. Remote, 48, 716–726, 2010. a
Ivins, E. R., Watkins, M. M., Yuan, D.-N., Dietrich, R., Casassa, G., and
Rülke, A.: On-land ice loss and glacial isostatic adjustment at the Drake
Passage: 2003–2009, J. Geophys. Res.-Solid Earth, 116, B02403,
https://doi.org/10.1029/2010JB007607, 2011. a
Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S.: Recent contributions of
glaciers and ice caps to sea level rise, Nature, 482, 514–518, 2012. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year
reanalysis project, B. Am. Meteorol. Soc., 77,
437–471, 1996. a
Lachaise, M.: Phase Unwrapping of Multi-Channel Synthetic Aperture Radar Data:
Application to the TanDEM-X Mission, Ph.D. thesis, Technische Universität
München, available at: http://elib.dlr.de/100297/ (last access: 18 September 2019), 2015. a
Lachaise, M. and Fritz, T.: Phase unwrapping strategy and assessment for the
high resolution DEMs of the TanDEM-X mission, in: 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 3223–3226, 2016. a
Langhamer, L.: Lagrangian Detection of Moisture Sources for the Southern
Patagonia Icefield, Master's thesis, Faculty for Geo- and Atmospheric
Sciences, University of Innsbruck, Austria, 2017. a
Langhamer, L., Sauter, T., and Mayr, G. J.: Lagrangian Detection of Moisture
Sources for the Southern Patagonia Icefield (1979–2017), Front. Earth
Sci., 6, 1–17, https://doi.org/10.3389/feart.2018.00219, 2018. a
Lee, J.-S., Hoppel, K. W., Mango, S. A., and Miller, A. R.: Intensity and phase
statistics of multilook polarimetric and interferometric SAR imagery, IEEE
T. Geosci. Remote, 32, 1017–1028, 1994. a
Lopez, P., Chevallier, P., Favier, V., Pouyaud, B., Ordenes, F., and Oerlemans,
J.: A regional view of fluctuations in glacier length in southern South
America, Global Planet. Change, 71, 85–108, 2010. a
Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., and
Paul, F.: Observation-Based Estimates of Global Glacier Mass Change and its
Contribution to Sea-Level Change, Surv. Geophys., 38, 105–130,
https://doi.org/10.1007/s10712-016-9394-y, 2017. a
Minowa, M., Sugiyama, S., Sakakibara, D., and Skvarca, P.: Seasonal variations
in ice-front position controlled by frontal ablation at Glaciar Perito
Moreno, the Southern Patagonia Icefield, Front. Earth Sci., 5, 1–15, https://doi.org/10.3389/feart.2017.00001,
2017. a
Nagler, T. and Rott, H.: Retrieval of wet snow by means of multitemporal SAR
data, IEEE T. Geosci. Remote, 38, 754–765, 2000. a
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second [Data
set], NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013. a
NASA JPL: NASA Shuttle Radar Topography Mission Swath Image Data [Data set],
NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMIMGR.003,
2014. a
NASA JPL: NASADEM Global Elevation Model (provisional),
available at: https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM, last access: 31 January 2018. a
Nuth, C. and Käáb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011. a
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K.,
Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R. L., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen,, S., and Winsvold, S.: On the accuracy
of glacier outlines derived from remote-sensing data, Ann. Glaciol.,
54, 171–182, 2013. a
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles,
E. S., Moholdt, G., Molg, N., Paul, F., Radic, V., Rastner, P.,
Raup, B. H., Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph
Glacier Inventory: a globally complete inventory of glaciers, J.
Glaciol., 60, 537–552, 2014. a, b
Rabus, B., Eineder, M., Roth, A., and Bamler, R.: The Shuttle Radar Topography
Mission – a new class of digital elevation models acquired by spaceborne
radar, ISPRS J. Photogramm. Remote Sens., 57, 241–262,
2003. a
Rasmussen, L. A., Conway, H., and Raymond, C. F.: Influence of upper air
conditions on the Patagonia icefields, Global Planet. Change, 59,
203–216, 2007. a
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-60, 2017. a
Rignot, E., Rivera, A., and Casassa, G.: Contribution of the Patagonia
Icefields of South America to sea level rise, Science, 302, 434–437, 2003. a
Rivera, A., Benham, T., Casassa, G., Bamber, J., and Dowdeswell, J. A.: Ice
elevation and areal changes of glaciers from the Northern Patagonia Icefield,
Chile, Global Planet. Change, 59, 126–137, 2007. a
Rivera, A., Koppes, M., Bravo, C., and Aravena, J. C.: Little Ice Age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia, Clim. Past, 8, 403–414, https://doi.org/10.5194/cp-8-403-2012, 2012. a
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M.,
Wessel, B., Krieger, G., Zink, M., and Moreira, A.:
Generation and performance assessment of the global TanDEM-X digital
elevation model, ISPRS J. Photogramm. Remote Sens., 132,
119–139, https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a
Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M.,
Daffer, W., and Hensley, S.: An assessment of the SRTM topographic products, Tech. Rep. D-31639, Jet Propulsion Laboratory, 2005. a
Rolstad, C., Haug, T., and Denby, B.: Spatially integrated geodetic glacier
mass balance and its uncertainty based on geostatistical analysis:
application to the western Svartisen ice cap, Norway, J. Glaciol.,
55, 666–680, 2009. a
Rott, H., Abdel Jaber, W., Wuite, J., Scheiblauer, S., Floricioiu, D., van Wessem, J. M., Nagler, T., Miranda, N., and van den Broeke, M. R.: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016, The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, 2018. a
Seal, D. and Rogez, F.: SRTM As-Flown Mission Timeline, Tech. rep., JPL NASA,
available at: http://www2.jpl.nasa.gov/srtm/SRTM_TIM_AF.pdf (last access: 18 September 2019), 2000.
a
Tiuri, M. E., Sihvola, A. H., Nyfors, E. G., and Hallikaiken, M. T.: The
complex dielectric constant of snow at microwave frequencies, IEEE J.
Ocean. Eng., 9, 377–382, 1984. a
Warren, C. and Aniya, M.: The calving glaciers of southern South America,
Global Planet. Change, 22, 59–77, 1999. a
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a
Weidemann, S. S., Sauter, T., Malz, P., Jaña, R. A., Arigony-Neto, J.,
Casassa, G., and Schneider, C.: Glacier mass changes of lake-terminating Grey
and Tyndall glaciers at the Southern Patagonia Icefield derived from geodetic
observations and energy and mass balance modeling, Front. Earth
Sci., 6, 1–16, 2018. a
Wendleder, A., Felbier, A., Wessel, B., Huber, M., and Roth, A.: A Method to
Estimate Long-Wave Height Errors of SRTM C-Band DEM, IEEE Geosci.
Remote Sens. Lett., 13, 696–700, https://doi.org/10.1109/LGRS.2016.2538822, 2016. a
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.:
Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS
data, ISPRS J. Photogramm. Remote Sens., 139, 171–182,
2018. a
Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., and Kern, M.: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013, The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, 2015. a
Short summary
We use topographic maps from two radar remote-sensing missions to map surface elevation changes of the northern and southern Patagonian ice fields (NPI and SPI) for two epochs (2000–2012 and 2012–2016). We find a heterogeneous pattern of thinning within the ice fields and a varying temporal trend, which may be explained by complex interdependence between surface mass balance and effects of flow dynamics. The contribution to sea level rise amounts to 0.05 mm a−1 for both ice fields for 2000–2016.
We use topographic maps from two radar remote-sensing missions to map surface elevation changes...