Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1911-2019
https://doi.org/10.5194/tc-13-1911-2019
Research article
 | 
15 Jul 2019
Research article |  | 15 Jul 2019

Submarine melt as a potential trigger of the North East Greenland Ice Stream margin retreat during Marine Isotope Stage 3

Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya

Related authors

Multi-annual patterns of rapidly draining supraglacial lakes in Northeast Greenland
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3056,https://doi.org/10.5194/egusphere-2024-3056, 2024
Short summary
Antarctic tipping points triggered by the mid-Pliocene warm climate
Javier Blasco, Ilaria Tabone, Daniel Moreno-Parada, Alexander Robinson, Jorge Alvarez-Solas, Frank Pattyn, and Marisa Montoya
Clim. Past, 20, 1919–1938, https://doi.org/10.5194/cp-20-1919-2024,https://doi.org/10.5194/cp-20-1919-2024, 2024
Short summary
Impact of millennial-scale oceanic variability on the Greenland ice-sheet evolution throughout the last glacial period
Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 15, 593–609, https://doi.org/10.5194/cp-15-593-2019,https://doi.org/10.5194/cp-15-593-2019, 2019
Short summary
The Antarctic Ice Sheet response to glacial millennial-scale variability
Javier Blasco, Ilaria Tabone, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
Clim. Past, 15, 121–133, https://doi.org/10.5194/cp-15-121-2019,https://doi.org/10.5194/cp-15-121-2019, 2019
Short summary
The sensitivity of the Greenland Ice Sheet to glacial–interglacial oceanic forcing
Ilaria Tabone, Javier Blasco, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 14, 455–472, https://doi.org/10.5194/cp-14-455-2018,https://doi.org/10.5194/cp-14-455-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Brief communication: Storstrømmen Glacier, northeastern Greenland, primed for end-of-decade surge
Jonas K. Andersen, Rasmus P. Meyer, Flora S. Huiban, Mads L. Dømgaard, Romain Millan, and Anders A. Bjørk
The Cryosphere, 19, 1717–1724, https://doi.org/10.5194/tc-19-1717-2025,https://doi.org/10.5194/tc-19-1717-2025, 2025
Short summary
Exploring the Greenland Ice Sheet's response to future atmospheric warming-threshold scenarios over 200 years
Alison Delhasse, Christoph Kittel, and Johanna Beckmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-709,https://doi.org/10.5194/egusphere-2025-709, 2025
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
A comparison of supraglacial meltwater features throughout contrasting melt seasons: southwest Greenland
Emily Glen, Amber Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Olivia Atkins, Brice Noël, and Malcolm McMillan
The Cryosphere, 19, 1047–1066, https://doi.org/10.5194/tc-19-1047-2025,https://doi.org/10.5194/tc-19-1047-2025, 2025
Short summary
Enhanced MOIDS-derived ice physical properties within CoLM revealing bare ice-snow-albedo feedback over Greenland
Shuyang Guo, Yongjiu Dai, Hua Yuan, and Hongbin Liang
EGUsphere, https://doi.org/10.5194/egusphere-2025-230,https://doi.org/10.5194/egusphere-2025-230, 2025
Short summary

Cited articles

Alvarez-Solas, J., Banderas, R., Robinson, A., and Montoya, M.: Ocean-driven millennial-scale variability of the Eurasian ice sheet during the last glacial period simulated with a hybrid ice-sheet-shelf model, Clim. Past, 15, 957–979, https://doi.org/10.5194/cp-15-957-2019, 2019. a, b
Anhaus, P., Smedsrud, L. H., Årthun, M., and Straneo, F.: Sensitivity of submarine melting on North East Greenland towards ocean forcing, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, in review, 2019. a, b
Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, 2013. a, b
Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., and Evans, J.: A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes, Geochem. Geophys. Geosyst., 16, 3733–3753, 2015. a, b, c
Arndt, J. E., Jokat, W., and Dorschel, B.: The last glaciation and deglaciation of the Northeast Greenland continental shelf revealed by hydro-acoustic data, Quaternary Sci. Rev., 160, 45–56, 2017. a, b, c
Download
Short summary
Recent reconstructions show that the North East Greenland Ice Stream (NEGIS) retreated away from its present-day position by 20–40 km during MIS-3. Atmospheric and external forcings were proposed as potential causes of this retreat, but the role of the ocean was not considered. Here, using a 3-D ice-sheet model, we suggest that oceanic warming is sufficient to induce a retreat of the NEGIS margin of many tens of kilometres during MIS-3, helping to explain this conundrum.
Share