Articles | Volume 13, issue 7
The Cryosphere, 13, 1843–1859, 2019
https://doi.org/10.5194/tc-13-1843-2019
The Cryosphere, 13, 1843–1859, 2019
https://doi.org/10.5194/tc-13-1843-2019
Research article
09 Jul 2019
Research article | 09 Jul 2019

Thermal conductivity of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements

Sergey Marchenko et al.

Related authors

The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020,https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018)
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019,https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary

Cited articles

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Tech., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a
Brandt, R. E. and Warren, S. G.: Temperature measurements and heat transfer in near-surface snow at the South Pole, J. Glaciol., 43, 339–351, https://doi.org/10.3189/S0022143000003294, 1997. a
Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Roscoat, S. R., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011GL049234, 2011. a, b, c, d, e, f
Calvetti, D. and Somersalo, E.: Introduction to Bayesian Scientific Computing, Springer, New York, 2007. a, b
Cuffey, K. and Paterson, W.: The physics of glaciers, Academic Press, Elsevier, Amsterdam, the Netherlands, 2010. a, b, c, d
Download
Short summary
Thermal conductivity (k) of firn at Lomonosovfonna, Svalbard, is estimated using measured temperature evolution and density. The optimized k values (0.2–1.6 W (m K)−1) increase downwards and over time and are most sensitive to systematic errors in measured temperature values and their depths, particularly in the lower part of the profile. Compared to the density-based parameterizations, derived k values are consistently larger, suggesting a faster conductive heat exchange in firn.