
The Cryosphere, 13, 1843–1859, 2019
https://doi.org/10.5194/tc-13-1843-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Thermal conductivity of firn at Lomonosovfonna, Svalbard, derived
from subsurface temperature measurements
Sergey Marchenko1, Gong Cheng2, Per Lötstedt2, Veijo Pohjola1, Rickard Pettersson1, Ward van Pelt1, and
Carleen Reijmer3

1Department of Earth Sciences, Uppsala University, Uppsala, Sweden
2Department of Information Technology, Uppsala University, Uppsala, Sweden
3Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands

Correspondence: Sergey Marchenko (sergey.marchenko@geo.uu.se)

Received: 31 December 2018 – Discussion started: 16 January 2019
Revised: 4 April 2019 – Accepted: 9 May 2019 – Published: 9 July 2019

Abstract. Accurate description of snow and firn processes is
necessary for estimating the fraction of glacier surface melt
that contributes to runoff. Most processes in snow and firn
are to a great extent controlled by the temperature therein
and in the absence of liquid water, the temperature evolu-
tion is dominated by the conductive heat exchange. The lat-
ter is controlled by the effective thermal conductivity k. Here
we reconstruct the effective thermal conductivity of firn at
Lomonosovfonna, Svalbard, using an optimization routine
minimizing the misfit between simulated and measured sub-
surface temperatures and densities. The optimized k∗ values
in the range from 0.2 to 1.6 W (mK)−1 increase downwards
and over time. The results are supported by uncertainty quan-
tification experiments, according to which k∗ is most sensi-
tive to systematic errors in empirical temperature values and
their estimated depths, particularly in the lower part of the
vertical profile. Compared to commonly used density-based
parameterizations, our k values are consistently larger, sug-
gesting a faster conductive heat exchange in firn.

1 Introduction

Glaciers and ice sheets are important indicators of past and
ongoing climate changes. Under the influence of temperature
fluctuations at the surface the subsurface glacier temperature
also changes. As a basic physical property of a medium, tem-
perature of snow, firn and ice controls multiple processes oc-
curring therein and at the glacier surface.

Climate-induced glacier mass change is strongly affected
by the state of snow and firn, where liquid water generated at
the surface of glaciers during the ablation period can be re-
frozen, thus reducing runoff. The magnitude of liquid water
refreezing is largely dependent on the subsurface tempera-
ture (e.g. Trabant and Mayo, 1985). A snowpack or firn pack
reaching lower temperatures during the winter season is able
to refreeze a larger amount of water during and after the ab-
lation season. Warmer snow and firn experience faster meta-
morphism (e.g. Jordan et al., 2008) and gravitational densifi-
cation (Ligtenberg et al., 2011). The distribution of temper-
ature under the glacier surface also defines the ground heat
flux, which contributes to the energy balance at the surface,
and is thus important for simulation of the surface energy
fluxes and melt rates. In addition, cold ice is more viscous
and less prone to deformation (e.g. Weertman, 1983). There-
fore, a colder glacier can be expected to exhibit lower flow
velocities, provided that other environmental parameters are
equal. Thus the processes of mass and energy exchange oc-
curring at glaciers are in tight interaction with the subsurface
temperature, which needs to be either measured or simulated,
if measurements are not possible.

In the absence of liquid water the changes in subsurface
temperature are defined by the process of thermal conduc-
tion described by Fourier’s law (Cuffey and Paterson, 2010,
p. 403), according to which the heat flux (Q) is proportional
to its thermal conductivity (k) and to the spatial temperature
gradient (∇T ):Q=−k∇T . Since most temperature fluctua-
tions occur at the surface, the dominant direction of heat flux
in near-surface glacier layers is vertical: Q=−k dT

dz
, where
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z is the vertical coordinate. Sturm et al. (1997) indicated that
several processes contribute to the temperature changes oc-
curring in a subfreezing porous snow and firn, namely con-
duction through the rigid ice matrix, conduction through the
air in pores, and latent heat transport through the pores due to
sublimation and condensation of water vapour. To underline
that fact and because all three processes are essentially driven
by the temperature gradient (e.g. Bartelt and Lehning, 2002),
here we use the term effective thermal conductivity (k) fol-
lowing Sturm et al. (1997) to describe the ability of snow, firn
and ice to transport thermal energy. Along with density (ρ)
and specific heat capacity (C) k is used to calculate thermal
diffusivity (κ) as κ = k(ρ C)−1.

Due to the direct connection between k of a medium and
temperature changes therein, most empirical estimates of k
are based on temperature measurements (Sturm et al., 1997).
Continuous measurements of natural temperature fluctua-
tions in snow and firn allow us to derive κ and k values us-
ing either Fourier-type analysis or optimization techniques.
Diurnal temperature fluctuations penetrate down to ca. 1 m
and the associated phase lag and/or amplitude dampening
occurring with depth can be used to reconstruct the effec-
tive thermal conductivity of seasonal snow (e.g. Sergienko
et al., 2008; Osokin and Sosnovsky, 2014). Annual fluctu-
ations penetrate down to ca. 10 m and thus k estimates for
thick firn packs using the method require a long data se-
ries undisturbed by the influence of liquid water (Dalrym-
ple et al., 1966; Weller and Schwerdtfeger, 1971; Giese and
Hawley, 2015). Alternatively, κ and k values in the heat equa-
tion can be determined by minimizing the misfit between
simulated and measured natural evolution of temperature in
snow and firn (e.g. Tervola, 1989; Zhang and Osterkamp,
1995; Yang, 1998). Brandt and Warren (1997) applied this
method for near-surface snow at the South Pole, Sergienko
et al. (2008) for the snowpack on a drifting iceberg and Ol-
droyd et al. (2013) for the seasonal snowpack on an Alpine
glacier.

Another option is to induce a heat flux in the snowpack
using a heat source and register the temperature response in
either an object with well-known properties that is in con-
tact with both the heat source and the snow or snowpack it-
self. The former method is known as the needle probe tech-
nique and is widely used to measure in situ effective thermal
conductivity of porous materials including snow (e.g. Lange,
1985; Singh, 1999; Morin et al., 2010). In the latter case the
snow sample is placed on a heated plate controlling the verti-
cal heat flux and the respective temperature gradient is mea-
sured, and the relation between the two values yields k (e.g.
Calonne et al., 2011; Riche and Schneebeli, 2013). Sturm
et al. (1997) provided an extensive overview of the above-
named methods and associated uncertainties, which was fol-
lowed up by further insights into possible biases of needle
probe measurements (Riche and Schneebeli, 2010).

A novel technique for estimation of k of snow was sug-
gested by Kaempfer et al. (2005) and further developed by

Calonne et al. (2011) and Riche and Schneebeli (2013). The
method relies on numerical simulation of processes con-
tributing to the heat flux driven by the temperature gradient
based on detailed 3-D X-ray micro-tomography images of
the snow matrix. It allows us to obtain the k tensor for rela-
tively small snow samples.

Published k values for snow and firn vary from 0.1 to
2.5 W (mK)−1 with a strong correlation with density, which
justifies the use of density as a proxy to calculate the effec-
tive thermal conductivity for modelling purposes (e.g. Sturm
et al., 1997; Riche and Schneebeli, 2013). The considerable
spread in values suggested by different parameterizations is
explained by the inconsistency in applied measurement tech-
niques and associated uncertainties and also by the influence
of snow and firn parameters other than density. That can be
temperature, grain size and contact area, pore diameter, and
inter-connectivity and anisotropy of the k property.

The purpose of the present study is to reconstruct the val-
ues of effective thermal conductivity of a thick snowpack
and firn pack at Lomonosovfonna, Svalbard, based on evo-
lution of subsurface temperature and firn density measured
in 2012–2015. Effective thermal conductivity of firn is de-
rived for five distinct periods by minimizing the misfit be-
tween the measured and simulated subsurface temperature
evolution. The method is promising, particularly for thick
firn packs. To our knowledge it has not been applied for this
purpose so far, although Sergienko et al. (2008) employed
similar routines for a seasonal snowpack and Nicolsky et al.
(2007) for permafrost. Fourier analysis applied earlier for a
thick firn pack at the Summit Station of the Greenland Ice
Sheet (Giese and Hawley, 2015) cannot be used here due to
the influence of meltwater. Retrieval of snow and deep firn
samples for direct measurements using heated plate or nee-
dle probe methods is logistically challenging. Estimates of
the firn k values are complemented by uncertainty quantifi-
cation experiments exploring propagation of possible biases
in empirical data through the applied models.

2 Field data

We use data on subsurface density and temperature evolution
collected at Lomonosovfonna, Svalbard, a flat ice field nour-
ishing several outlet glaciers. The field site is at 78.824◦ N,
17.432◦ E, 1200 m a.s.l., which is well above the equilibrium
line, estimated to be at ca. 720 m a.s.l. (van Pelt et al., 2012).
The local glacier thickness is 192± 5.1 m (van Pelt et al.,
2013) of which the firn layer constitutes ca. 20 m (Wendl,
2014). The accumulation rates estimated from repeated radar
surveys (Pälli et al., 2002; van Pelt et al., 2014) are 0.58–
0.75 m w.e. yr−1. The melt rate simulated by a model de-
scribing surface fluxes of energy and mass (van Pelt et al.,
2012) is 0.34 m w.e. yr−1. The net annual accumulation rates
resulting in the relative vertical shifts of the glacier surface
are estimated at 1.12 (April 2012–2013), 1.32 (April 2013–
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2014) and 0.9 (April 2014–2015) m. The first two values are
based on readings at mass balance stake S11 (see Fig. 1a in
Marchenko et al., 2017a) and the last one is derived by min-
imizing the misfit between temperature profiles measured in
April 2015 by the thermistor strings installed in April 2014
and in April 2015. The firn pack at Lomonosovfonna is heav-
ily influenced by the percolation and refreezing of meltwa-
ter (Marchenko et al., 2017b), which results in prominent
variability of subsurface stratigraphy at the scale of 10 m
(Marchenko et al., 2017a).

2.1 Subsurface density

Four shallow firn cores (9.5 cm diameter) were drilled at
Lomonosovfonna in April 2012–2015 using a Kovacs core
drill. The density and stratigraphy profiles (Fig. 1) for the
first three cores were presented in detail by Marchenko et al.
(2017a) along with the details on field and laboratory proce-
dures applied. Similar routines were applied in 2015.

2.2 Subsurface temperature

2.2.1 Equipment

Subsurface temperature was measured using multiple ther-
mistors grouped in several strings. They were placed in bore-
holes with a 5.5 cm diameter drilled by a Kovacs auger. The
boreholes were then backfilled with drill chips and loose
snow to minimize the perturbation of the snow and firn me-
dia. In 2012–2014 nine thermistor strings were placed in a
rectangular 3×3 grid with a separation of 3 m between neigh-
bouring boreholes (Marchenko et al., 2017a, b). In April
2015 only one thermistor string was installed.

All thermistor strings were custom manufactured at Upp-
sala University using a multi-leaded cable with a PVC jacket
and uni-curve NTC thermistors. In 2015 the cable was placed
in multiple 2 m long rigid plastic tubes to ensure a precise and
constant separation between neighbouring sensors. The sen-
sors were fed through holes in the tubes and fixed at their
outer surface for better contact with the sounded environ-
ment.

The thermistor strings were scanned using a Campbell Sci-
entific CR10X data logger and several relay multiplexors.
Each thermistor was connected in series with a reference
resistor and precisely measured excitation voltage was ap-
plied to the circuit. Voltage drop over the reference resistor
was measured and then converted first to corresponding re-
sistances of the sensors and then to temperature values using
Ohm’s law and recommendations provided by the thermistor
manufacturer.

The evolution of subsurface temperature was recorded dur-
ing four time periods: 21 April–19 October 2012, 22 April–
12 July 2013, 17 April 2014–11 April 2015 and 15 April–
9 July 2015. The frequency of measurements is shown by the
colour bar at the bottom of Fig. 2. During the first two pe-

riods it was once every 3 h; during the fourth period it was
once every 1 h. During the third period the frequency varied
and was once every 1 h during 17 April–31 July 2014 and 15
April–9 July 2015, once every 3 h during 1 August–31 Oc-
tober 2014 and once every 12 h from 1 November 2014 to
14 April 2015. The strings installed in 2012, 2013 and 2014
contained up to 128 thermistors covering a depth from 0.5
to 12 m with a vertical separation varying from 0.25 to 2 m
(Marchenko et al., 2017b; see Fig. 2 therein). In 2015 the
string contained 31 sensors separated by 0.25–1 m covering
a similar depth interval.

2.2.2 Data post-processing

Several post-processing routines were applied to the mea-
surements of the subsurface temperature evolution. Firstly,
the individual thermistors were calibrated against 0 ◦C by ap-
plying an offset defined as the mode (most frequent value) of
the values measured during 1 July–1 September. During this
period subsurface temperature is most likely to reach 0 ◦C.
The value serves as a natural upper limit for the snow and
firn temperature and is well interpreted from plots of mea-
sured values against time.

Secondly, spline interpolation was applied to interpolate
the data from each thermistor string to a common vertical
grid with 0.1 m spacing between neighbouring nodes. During
April 2012–2015 the subsurface temperature was simultane-
ously measured by several thermistor strings and thus the in-
terpolated dataset was subsequently averaged horizontally to
produce a single series τ describing subsurface temperature
changes in time (superscript n) and depth (subscript i):

τni =
1
q

q∑
m=1

τni m, (1)

where τni m is the temperature measured by themth thermistor
string and q is the total number of strings. In 2015 only one
thermistor string was installed and thus no averaging was ap-
plied. To characterize the spread in temperature values mea-
sured at the same depth and time but by different instruments
the corresponding standard deviations were calculated as

(
σ nτ i
)2
=

1
q − 1

q∑
m=1

(
τnim− τ

n
i

)2
. (2)

3 Modelling

The evolution of subsurface temperature in the upper 10–
15 m of a glacier is mostly controlled by two processes: con-
ductive heat flow and refreezing of liquid water accompa-
nied by release of the latent heat (Cuffey and Paterson, 2010,
p. 403). Configuring the computational domains to mini-
mize the influence of non-conductive heat fluxes, we com-
pute the effective thermal conductivities for the firn profile
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Figure 1. Subsurface stratigraphy and density in four cores recovered in April 2012 (a), 2013 (b), 2014 (c) and 2015 (d). Also shown are the
density profiles simulated using the maximum likelihood approach in Eq. (8).

Figure 2. Measured evolution of subsurface temperature. The vertical axis is referenced to the glacier surface in April 2015. The horizontal
axis is referenced to 21 April 2012 and is linear for the periods covered by measurements: 21 April–19 June 2012 (“spring 2012”), 22 April–
1 June 2013 (“spring 2013”), 18 April–4 July 2014 (“spring 2014”), 25 September 2014–11 April 2015 (“autumn 2014”), and 15 April–9 July
2015 (“spring 2015”) and arbitrary between the domains. White curves indicate the upper and lower boundaries of the simulation domains.
The colour bars along the horizontal axis show the intervals between measurements: yellow – 1 h, blue – 3 h and green – 12 h.

at Lomonosovfonna and assess their sensitivity to errors in
empirical data used in the simulations.

The computational procedure is as follows. Within the for-
ward model (see Sect. 3.1) the heat equation is approximated
numerically and then solved for the temperature with a given
conductivity k and density ρ. The two parameters are then
iteratively adjusted to derive conductivity k∗ and density ρ∗
minimizing the difference between the simulated and mea-
sured subsurface temperature and density (see Sect. 3.2). To
quantify the uncertainties associated with k∗ we first define

the feedback of simulated temperature to change in individ-
ual conductivity values. These results are then used to com-
pute the sensitivity of conductivity to errors in the empiri-
cally derived

– temperature values (see Sect. 3.3.1),

– depths of temperature values (see Sect. 3.3.2) and

– density values (see Sect. 3.3.3).
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These routines were coded using MATLAB R-2018a soft-
ware. All computations on a laptop with four cores Intel(R)
i7-4600 CPU 2.1 GHz are obtained in less than 10 s.

The time periods are chosen to minimize the influence of
water refreezing on the evolution of subsurface temperature.
They are referred to as “spring 2012”, “spring 2013”, “spring
2014”, “autumn 2014”, and “spring 2015” and correspond-
ingly cover 21 April–19 June 2012, 22 April–1 June 2013,
18 April–4 July 2014, 25 September 2014–11 April 2015
and 15 April–9 July 2015. Furthermore, temperatures values
above −2 ◦C are excluded from the analysis to avoid the in-
fluence of latent heat fluxes from firn volumes with increased
water content as the freezing front propagates through them.
To minimize the potential influence of near-surface processes
(radiation penetration, wind effects) on the results, we disre-
gard the temperature values measured above the depth of 1 m
referenced to the glacier surface at the moment of instrument
installation.

3.1 Conduction model setup

The model is based on Fourier’s law of heat conduction. The
temperature of the firn T (◦C) at depth z (m) and time t (s) is
governed by the one-dimensional equation

ρ(z)C
∂T

∂t
=
∂

∂z
(k(z)

∂T

∂z
), (3)

where ρ is the subsurface density (kgm−3), C =

2027 J (kgK)−1 is the specific heat capacity calculated
using the temperature-dependent function from Cuffey and
Paterson (2010, p. 400) for the temperature of −10 ◦C and
k is the effective thermal conductivity (W (mK)−1). Given
k(z), ρ(z), and the initial and boundary conditions, Eq. (3)
is solved forward in time for T (z, t).

The numerical solution of Eq. (3) is based on a discretiza-
tion with the time step 1t and space step 1z. The spatial
and temporal derivatives are approximated using the Crank–
Nicolson method (Dahlquist and Björck, 2003) with central
finite differences in space and trapezoidal rule in time. Let
T ni be the temperature T (zi, tn) at tn = n1t , n= 1, . . ., N
and zi = i1z, i = 1, . . ., Mn. The number of time steps is N
and the number of nodes in space Mn varies in time. The
solution at zi is advanced in time from tn to tn+1 as

ρiC
T n+1
i − T ni

1t
=

1
2

(
DT n+1

i +DT ni
)
, n= 1, . . ., N − 1, (4)

where DT ni is the spatial temperature derivative at zi approx-
imated by

DT ni =
(ki+1+ ki)

(
T ni+1− T

n
i

)
− (ki + ki−1)

(
T ni − T

n
i−1
)

21z2 . (5)

Collecting terms in Eq. (4) with T n+1 on the left-hand side
and terms with T n on the right-hand side, a tridiagonal
system of linear equations can de derived and solved for

T n+1
i by a direct method. The time integration is uncondi-

tionally stable and second-order accurate in space and time
(Dahlquist and Björck, 2003).

At each time step the computations are performed for Mn

nodes from the top at z1 = 1 m to the bottom at zMn where the
temperature is just below −2 ◦C, which minimizes the influ-
ence of the latent heat release at the freezing front. Thus the
depth of the lower boundaries of the simulation domains zMn

increases over time following the downward propagation of
the −2 ◦C isotherm as shown by the white curves in Fig. 2.
The vertical step (1z) follows the depth interval in the em-
pirical dataset and is 0.1 m. The chosen time step is 1 h and in
case the measurement period is larger than that, linear inter-
polation is used to derive the values missing in the upper and
lower boundary conditions. The model is initialized in each
of the five time periods using measured temperature values
τ 1
i . The upper and lower boundary conditions are of Dirich-

let type and are determined by the temperatures measured at
z1 and zMn : T n1 = τ

n
1 and T nMn = τ

n
Mn .

The density ρ(z) and effective thermal conductivity k(z) at
depths zi are constrained using piecewise linear interpolation
based on J nodes vertically spaced by 1 m. Since the forward
model is used within an inversion routine (see Sect. 3.2) op-
timizing the J 1 m spaced ρ and k values, the latter are given
by an arbitrary initial guess at the first inversion iteration and
later by the results of the previous inversion iteration. For
the domains covering spring seasons J equals 8 and is 6 in
autumn 2014 with the uppermost value corresponding to the
upper boundary of the computational domain. The choice of
J value is a compromise between coarse vertical resolution
of the optimized parameters (low J ) and insufficient number
of data to constrain a very detailed k∗ profile (high J ). Too
large J will result in an oscillatory optimal solution for k.

3.2 Inverse routine

The effective thermal conductivity k in Eq. (5) is unknown.
Therefore, the above-described forward model is used in an
optimization routine to iteratively derive the values of the ef-
fective thermal conductivity and density that minimize ob-
jective function Fτ,%(k,ρ). Following Smith (2013), the lat-
ter is defined by the sums of squared differences between the
simulated and measured temperature and density:

Fτ,%(k,ρ)=

N∑
n=1

Mn∑
i=1

1(
στni

)2

(
T ni (k,ρ)− τ

n
i

)2

+ γ

Mn∑
i=1

1(
σ%i
)2 (ρi − %i)2, (6)

and the optimization routine attempts to minimize Fτ,%(k,ρ)
by adjusting the conductivity k and density ρ values used in
simulations. In Eq. (6) T ni (k,ρ) and τni are the simulated and
measured temperature values at time tn and depth zi , and %i
is the density measured at depth zi . For the spring domains
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% profiles are taken from the cores drilled within a couple of
days from the start of simulation and for the autumn 2014 do-
main we reuse the density data from the core drilled in April
2014. The deviations of the simulated temperature values
from empirical data are weighted by the variances (στni )

2 in
temperature values from different thermistor strings but at the
same time and depth (see Eq. 2). This results in lower signif-
icance of simulation errors when the measurements are less
certain. It is thus assumed that measurement errors are inde-
pendent and normally distributed with zero mean and vari-
ance (στni )

2. Since only one shallow core was drilled every
year, empirical data are not available to quantify the errors
in density measurements, and the weighting term σ%i was set
to 1 kgm−3. The value γ = 10 is chosen to keep the balance
between the temperature and density terms in F such that the
optimal solutions are smooth and ρ is close to the measure-
ments in l2-norm. The choice of γ depends on the size of the
data N , Mn, and the magnitudes of τ and %.

Choice of the cost function in Eq. (6) does not assume
any correlation between k and ρ. This relation is derived
later in Sect. 4.6 based on the optimized k and ρ values.
The primary aim here is to derive the optimal k values at
J nodes. Optimization of the densities used by the forward
model is included in the optimization to allow for flexibil-
ity in the parameter ρ since the measurements in single firn
cores are uncertain and may be not representative at the scale
of ca. 10 m covered by thermistor measurements. The second
term on the right-hand side of Eq. (6) can be interpreted as a
Bayesian prior guess (Smith, 2013; Calvetti and Somersalo,
2007) adding extra information about ρ or a regularization of
the density according to Tikhonov (Calvetti and Somersalo,
2007).

We introduce the vectors:

T =
(
T 1

1 ,T
2

1 , . . .,T
N

1 ,T
1

2 , . . .,T
N

2 ,T
1

3 , . . .,T
N
M

)T
,

τ =
(
τ 1

1 ,τ
2
1 , . . ., τ

N
1 ,τ

1
2 , . . ., τ

N
2 ,τ

1
3 , . . ., τ

N
M

)T
,

ρ = (ρ1,ρ2, . . .,ρM)
T ,

% = (%1,%2, . . .,%M)
T ,

where M =maxnMn. Let the diagonal matrices W

have Wjj = 1/
(
στni

)2
, j =N(i− 1)+ n, n= 1, . . .,N , i =

1, . . .,Mn, andWjj = 0, j =N(i−1)+n, n= 1, . . ., N , i =
Mn
+ 1, . . .,M , on the diagonal. Then F in Eq. (6) can be

written as

Fτ,%(k,ρ)= (T − τ)
TW(T − τ)+ γ (ρ− %)T (ρ− %). (7)

The diagonal elements of W vanish when i > Mn since the
sums in Eq. (6) are restricted to i ≤Mn.

The optimal k∗ and ρ∗ minimize F in Eqs. (6) and (7)
and the solution of the nonlinear least-squares optimization
problem can be written as(
k∗,ρ∗

)
= arg min

k,ρ

Fτ,%(k,ρ). (8)

It is solved by the lsqnonlin function in MATLAB.

3.3 Uncertainty quantification

Results of the optimization routine largely rely on the em-
pirical data used to guide the routine. The sensitivity of opti-
mized k∗ values is explored separately for the errors in mea-
sured temperature, depths of empirically derived temperature
values (both affecting the vertical temperature gradient) and
measured density values by applying uncertainty quantifica-
tion techniques described by Smith (2013). The results of the
sensitivity estimates are only valid for relatively small errors
on the order of ca. 5–10 % of the parameter value in question.

3.3.1 Temperature

Errors δτ in the measured temperature values τ in Eq. (6)
propagate to the effective thermal conductivities k∗ derived
from the optimization problem in Eq. (8). Here we first in-
verse the logic and calculate the feedback of simulated tem-
perature values T to relatively small perturbations in individ-
ual k∗ values. These results are then used to define the re-
sponse of optimized thermal conductivities to possible errors
in temperature data.

In general, temperature deviations resulting from pertur-
bation δk in the effective thermal conductivity vector k∗ can
for time tn and depth zi be described by the equation

T ni
(
k∗+ δk,ρ∗

)
− T ni

(
k∗,ρ∗

)
=

J∑
j=1

Anij δkj , (9)

where Anij represents the local temperature responses at tn

and zi to unit perturbations in kj , j = 1, . . ., J . The full sen-
sitivity matrix A describes the spatio-temporal distribution of
the deviations between temperature simulations carried out
using perturbed and not perturbed effective thermal conduc-
tivities. A is defined as

A=

A1
11 A1

12 · · · A1
1 J

...
...

AN11 AN12 · · · AN1 J

A1
21 A1

22 · · · A1
2 J

...
...

ANM 1 ANM 2 · · · ANM J

. (10)

Each row corresponds to specific indices in time, n=
1, . . .,N , and space, i = 1, . . .,M and columns correspond to
different k values j = 1, . . .,J , and in a general case J is not
fixed to 6 or 8 and can be equal to M . Then the matrix form
of Eq. (9) is

T
(
k∗+ δk,ρ∗

)
= T

(
k∗,ρ∗

)
+Aδk. (11)
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To derive the J columns in the sensitivity matrix A in
Eq. (10) the forward model (see Eq. 3) was run J times con-
secutively, perturbing the individual thermal conductivities
k∗ j , j = 1,2 . . .,J by the value 1k. The elements of A are
approximated by the finite difference formula

Ani j =
T ni

(
k∗+ δkj ,ρ∗

)
− T ni

(
k∗,ρ∗

)
1k

, (12)

where the entries of δkj are zero except for the j th one,
which is 1k = 10−6 W (mK)−1. Note that a perturbation of
k∗ j will change all values of k(z) between zj−1 and zj+1
due to the linear interpolation for k. The full matrix A can
be used to quantify deviations in the optimal k∗ given an
assumption regarding the possible errors in measured tem-
perature values. Since the upper and lower boundary condi-
tions are given by τn1 and τnMn for every k, the elements An1j
and AnMnj for j = 1, . . .,J , n= 1, . . .,N in A in Eq. (10) are
zero. Consequently, we do not assess the effect of errors in
the temperature measurements on k∗ through the values used
to initialize and force the forward model.

Assuming that perturbations δτ in the temperature data τ
will result in deviations δk of the optimized thermal conduc-
tivity values from the original estimate k∗, the optimization
problem in Eq. (8) now has the solution

k∗+ δk = arg minkFτ+δτ,%
(
k,ρ∗

)
. (13)

If δτ in Eq. (13) is small and ρ∗ is fixed, then using Eqs. (7)
and (11) one can show that δk in Eq. (13) satisfies

ATWAδk = ATWδτ. (14)

By linearizing the dependence of Tj
(
k∗+ δk,ρ∗

)
−

T
(
k∗,ρ∗

)
on δk in Eq. (11), we arrive at a linear least-

squares problem to solve for δk in Eq. (14):

δk = (ATWA)−1ATWδτ = Aτ δτ. (15)

The weight matrix W in Eq. (15) is used to select only
those values of δτ that are inside the computational domain.
Columns in the sensitivity matrix Aτ correspond to the dif-
ferent k∗ j nodes and individual elements express the feed-
back to be expected from the respective thermal conductivity
value to unit perturbations at different depths and moments
in time.

It is further assumed that errors in temperature measure-
ments δτ are independent in space and constant in time and
can be expressed as

δτ = Eδς , (16)

where the elements of column vector δς are normally dis-
tributed random variables δςi ∼N (0, s2

i ), i = 1, . . ., M , with
zero mean and standard deviations si . The elements of the
MN ×M matrix E are zero except for Eki = 1, k =N(i−
1)+ n, n= 1, . . .,N , i = 1, . . .,M . Then the error in τni is

δτni = δςi . The expected values of δk can be evaluated using
Eqs. (15) and (16):

E [δk]= AτEE [δς ]= 0, (17)

and the variances are found on the diagonal of the covariance
matrix

Cov[δk]= E
[
(Aτ δτ )(Aτ δτ )T

]
= AτE

[
δτδτT

]
ATτ

= AτEE
[
δςδςT

]
ETATτ = AτESETATτ , (18)

where S is a square, diagonal M ×M matrix with s2
i on the

diagonal. In the numerical experiments for the first four time
periods when nine thermistor strings were used si is taken as
the time average of στni in Eq. (2): s2

i =
1
N

∑N
n=1σ

2
τni

and for
spring 2015 when only one thermistor string was used as a
vertically uniform value of s2

i = 0.02.

3.3.2 Depth of temperature sensors

The process of conductive heat flow is governed by the spa-
tial temperature gradient ∂T

∂z
. Uncertainty in the empirical es-

timates of the gradient depends not only on the accuracy and
precision of the measured temperature values, but also on the
possible biases in the estimates of the depths of the sensors.
Real positions of the latter may differ from the ones assumed
according to the original design due to the curvature of the
thermistor cable in the borehole. Here possible biases in z
are converted to possible biases in T using the definition of
the temperature gradient and the uncertainty in k∗ is quanti-
fied using Aτ in Eq. (15).

The error in vertical separation of the temperature values
attributed to depths zi and zi+1 is assumed to be constant in
time and is denoted by δεi+1. Then

zi+1 = zi +1z+ δεi+1 = z1+ i1z+

i+1∑
j=1

δεj

= z1+ i1z+ δzi+1, (19)

where i = 1, . . ., Mn
−1, δzi is the cumulative error in depth.

At z1 we have the error δz1 = δε1. If δεi , i = 1, . . ., Mn are
normally distributed random variables independent of each
other and with the mean values ε and variances σ 2

z , δεi ∼
N (ε,σ 2

z ), then δzi ∼N (iε, iσ 2
z ). With the lower triangular

M ×M matrix R in

R=


1 0 · · · 0
1 1 · · · 0
...

1 1 · · · 1

 ,
the relation between local (δε) and cumulative (δz) depth er-
rors is δz= Rδε.

www.the-cryosphere.net/13/1843/2019/ The Cryosphere, 13, 1843–1859, 2019



1850 S. Marchenko et al.: Firn thermal conductivity from subsurface temperature

The temperature perturbation value δτni can be expressed
using the temperature gradient and the position error δzi as

δτni = δzi
∂T

∂z

∣∣∣∣
z=zi ,t=t

n

. (20)

Let the elements of the matrix T be zero except for
Tki = ∂T

∂z

∣∣∣
z=zi ,t=t

n
, where k =N(i− 1)+ n, n= 1, . . ., N ,

i = 1, . . .M . Then δτ = T δz= T Rδε. Thus, the minimal δk
in Eq. (13) satisfies Eq. (14) with the solution

δk = (ATWA)−1ATWT Rδε = Azδε, (21)

with elements of the matrix Az expressing the response of
the k∗ value in question to unit perturbations in depths of
empirical temperature values (cf. with Aτ in Eq. 15). The
expected value of δk is

E [δk]= AzE [δε]= εAzeM , (22)

where eM is a vector of length M with elements 1. Since
stretching of the cable in a borehole is not likely, both δε and
E[δk] values are negative rather than positive.

In line with Eq. (18), the covariance in δk is

Cov[δk]= AzCov[δε]ATz = σ
2
z AzATz . (23)

The variances of δk are found on the diagonal of Cov[δk],

Var
[
δkj

]
= σ 2

z

Mn∑
i=1

A2
zji, (24)

and show how the variances σ 2
z are magnified to the variances

in thermal conductivity through δε.
In the absence of empirical estimates of deviation of the

real depths of sensors with respect to the designed ones,
the quantification of ε is based on the fact that the vertical
deviation of the direction of cable with thermistors is con-
strained by the walls of the borehole separated by diameter
d = 0.05 m. The uncertainty ε can be expressed as

ε = L−
√
L2− d2, (25)

where L is the typical separation between two points on the
cable where it touches the walls of the borehole. In the case
in which L is assumed to be equal to 1 m, ε is 1.3 mm.

3.3.3 Density

Both the forward model and the optimization routine rely on
the empirical data on the subsurface density. To assess the
sensitivity of optimized thermal conductivity values k∗ to er-
rors in density data % we first assess the feedback of simu-
lated errors to deviations in ρ∗ and then translate these results
to perturbations δk using the matrix Aτ (see Eq. 15).

The sensitivity of the temperature due to perturbations δρ
in ρ is computed following the logic of Eq. (9). The sensitiv-
ity matrix B is defined as

T ni
(
k∗,ρ∗+ δρ

)
= T ni

(
k∗,ρ∗

)
+

J∑
j=1

Bnij δρj , (26)

or in matrix form

T
(
k∗,ρ∗+ δρ

)
= T

(
k∗,ρ∗

)
+Bδρ, (27)

with the elements Bnij in B calculated and ordered in the
same manner as in A in Eqs. (10) and (12). A perturbation
δρ can be interpreted as a perturbation in the temperature
δτ =−Bδρ in the first term of Eq. (7) and by Eq. (15) it fol-
lows that the perturbation in k∗ will be

δk =−(ATWA)−1ATWBδρ =−Aρδρ. (28)

The second term in Eq. (7) has no influence on the solution
here since we minimize over k.

3.3.4 Hessian of the objective function

The behaviour of the objective function Fτ,%(k,ρ) in Eqs. (6)
and (7) close to the optimum k∗, ρ∗ is determined by the
Hessian matrix H:

H=
(

ATWA ATWB
BTWA BTWB+ γ I

)
, (29)

where A, B, W, and γ are defined in Eqs. (11), (27), (7),
and (6) and I is the identity matrix. A small perturbation
δχ = (δk,δρ) of k∗, ρ∗ will change Fτ,% by δχTHδχ . The
Hessian H is positive definite with positive eigenvalues and
orthogonal eigenvectors when γ > 0. Thus, k∗, ρ∗ is a local
minimum of Fτ,%. In the direction δχ of an eigenvector with
a large eigenvalue, the optimum is well defined but in a di-
rection along an eigenvector corresponding to a small eigen-
value the uncertainty in the optimum is larger.

4 Results and discussion

4.1 Measured subsurface density and temperature

The subsurface glacier profile observed in the cores con-
sists of snow and firn with multiple ice lenses (Fig. 1).
The measured snow and firn density (%) varies from 350
to 900 kgm−3 with a gradual increase downward and occa-
sional spikes corresponding to the ice layers apparent from
the stratigraphical record. Compared with the measured val-
ues, the optimized densities (ρ∗) show similar ranges and the
overall pattern of an increase with depth (Fig. 1).

The evolution of subsurface temperature τni measured dur-
ing five periods used for the simulations is shown in Fig. 2.
The position of the upper boundary shifts upward following
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the snow accumulation at the surface. The evolution of deep
temperature outside of the melt season generally follows the
surface temperature with significant dampening with depth
and time delay of the amplitude. During autumn 2014 tem-
perature continuously decreases at all depths. During the four
spring seasons the same pattern is observed only below ca. 3–
4 m, while the upper part of the profile experienced warming.
The measured temperature generally increases with depth;
however, the opposite tendency is observed for the upper ca.
1–2 m of the profile in the spring seasons, particularly to-
wards the end of the simulation periods. The simulation do-
mains where Eq. (3) is solved and k and ρ are optimized
in Eq. (8) are bound by the white curves limiting the area
with temperature values colder than −2 ◦C and depths at the
time of instrument installation larger than 1 m. The snow and
firn temperature measured in April–May 2014 is significantly
lower than the values registered at similar depths below the
surface in April–May of the following year (Fig. 2). Based
on this finding we suggest that the late part of the winter sea-
son in 2014 (February–April) was colder than in 2015. This
finding is supported by the data from an automated weather
station (AWS) at Nordenskiöldbreen (600 m a.s.l.), accord-
ing to which in 2015 March and April were warmer than in
2014 by 2.5 and 6 ◦C correspondingly (description of AWS
and data can be found at: http://www.projects.science.uu.nl/
iceclimate/aws/, last access: 24 June 2019). The vertical tem-
perature gradients measured in 2015 on 11 and 15 April by
the thermistor strings installed a year earlier and by the new
installation are in good correspondence (Fig. 2). This sug-
gests that during 1 year (April 2014–April 2015) gravita-
tional densification of snow and firn did not result in signif-
icant change of the separation between sensors and justifies
the usage of time-constant density profiles in our simulations.

4.2 Optimized thermal conductivity values k∗

The effective thermal conductivities k∗ optimized according
to the Eq. (8) range from 0.2 to 1.6 W (mK)−1 and are pre-
sented in Fig. 3b. The values consistently increase with depth
at the rate of ca. 0.11 W (m2 K)−1 on average and somewhat
slower in the autumn of 2014. The temporal change in k∗
values can also be assessed with reference to Fig. 3b since
the profiles for different domains are plotted with a vertical
offset accounting for the surface accumulation. The overall
tendency is increase in k∗ over time with an average rate of
0.09 W (mKyr)−1. Provided that the surface accumulation
rates at the field site are slightly above 1 m, this is less than
the expected value from the vertical gradient in k∗. In the ab-
sence of a physical process that could result in a decrease in
the firn effective thermal conductivity k∗ over time, the ap-
parent lowering of optimized k∗ values, such as seen between
8 and 10 m from spring 2012 to spring 2013, is attributed to
the uncertainties in empirical data such as temperature read-
ings, depths of individual sensors, density measurements and
estimates of the surface accumulation rate.

The uncertainty bar for each k∗ value is calculated follow-
ing Eq. (18) and denotes the intervals of 1 standard deviation
from the mean value. The bars take into account only the pos-
sible errors in subsurface temperature measurements quanti-
fied through the time-averaged standard deviations in values
from different thermistor strings (Fig. 3a). Compared with
the k∗, the uncertainty values are generally small and are be-
tween ca. 0.03 and 0.25 W (mK)−1. The overall increase in
uncertainty of k∗ values with depth is due to the downward
decrease in temporal and spatial temperature gradients and
also in the number of measurements with temperature below
−2 ◦C. Altogether this results in an increase in chances for
the optimization routine to converge to a “wrong” k∗ value
based on biased temperature simulations resulting from it, as
the biases are smaller and lesser in number than in the upper
part of the profile. The deepest k∗ values in spring 2012 and
2013 exhibit outstandingly high uncertainty values, which
is explained by the fact that the values are found at depths
where temperature never reaches below −2 ◦C and are thus
constrained only through the part of the linear fit to the k∗
value above that lies within the simulation domain. Due to
the lack of data and large variances of the temperature mea-
surements deep down, the deepest k∗ values in each of the
two domains in 2012 and 2013 are likely not reliable.

In Fig. 4, the optimal k∗ (a) and ρ∗ (b) values are computed
for the spring 2012 domain for different γ values. The result
varies for the extreme values of γ but is consistent for in-
termediate γ . The k∗ and ρ∗ values are indistinguishable for
γ = 10, 103 and γ = 10, 103, 107, respectively. The eigen-
vector for the smallest eigenvalue (Fig. 4c) shows that the
uncertainty is largest for the deepest k∗ values when γ ≥ 10
in agreement with Fig. 3b. When γ = 10−5 then the regular-
ization of ρ is insufficient with oscillations in the solution
and an eigenvector with large entries and uncertainty for all
ρ values. The results for other seasons are similar.

4.3 Sensitivity of k∗ to errors in temperature
measurements

The results of sensitivity experiments exploring the feedback
(Aτ in Eq. 15) of k∗ values to errors in subsurface temper-
ature measurements τni are presented in Fig. 5. The black
markers close to the right border of each dataset show the
positions of k∗ points. The colour at any specific point in
depth zi and time tn corresponds to the response of the k∗ j
value at the depth indicated by the black circle marker to a
unit change in temperature (1 ◦C) at depth zi and time tn. The
sensitivity is set to zero outside of the computational domain,
the lower boundary of which is shown by the black curves.

It can also be noted that here we analyse the k∗ feedback
to errors in individual temperature values within the dataset
used to constrain the optimization routine. For the first four
calculation domains (spring 2012–2014 and autumn 2014),
these data are the result of lateral averaging of data from
nine (q = 9 in Eq. 1) thermistor strings. Although the strings
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Figure 3. (a) Time-averaged standard deviations in subsurface temperature measured by different thermistor strings (si ). (b) Optimized
effective thermal conductivity values (k∗) calculated following Eq. (8) with error bars according to Cov[δk] in Eq. (18) assuming temperature
errors shown in panel a.

Figure 4. The optimal solutions k∗ (a) and ρ∗ (b) in the spring 2012 domain for different values of γ in Eq. (7). The black curve in (b) shows
measured density values. (c) Absolute values of the eigenvector with the smallest eigenvalue of the Hessian H in Eq. (29).

are coupled to the same data logger, the errors in tempera-
ture measurements can be assumed to be at least partly in-
dependent. Thus sensitivities Aτ to temperature errors com-
ing from single thermistor strings and not laterally averaged

datasets can be expected to be lower than indicated by colour
coding in Fig. 5 by a factor of

√
q = 3.

Optimized k∗ values are not very sensitive to single er-
rors in subsurface temperature data: for j = 1. . .7 (Fig. 5a–
g) the expected response of the thermal conductivity val-
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Figure 5. Sensitivity (Aτ in Eq. 15) of effective thermal conductivities (k∗ j ) to errors in the temperature measurements. Panels (a–h)
correspond to j = 1,2, . . .,8, in each case the depth of k∗ j is highlighted by black circle; depths of other k∗ values are shown by black dots.
The colour at a certain point in depth and time corresponds to the feedback of the k∗ j value found at the depth shown by the black circle to
a unit error in temperature (+1 ◦C) at that depth and time. Black curves indicate the lower boundaries of the computational domains; below
them the sensitivity is set to 0. The horizontal axes are the same as in Fig. 2.

ues k∗ j to a 1 ◦C error varies between −1.1× 10−3 and
1.1×10−3 W (mK)−1, corresponding to the Aτj−3σAτj and
Aτj + 3σAτj , where Aτj and σAτj are the mean and standard
deviation of the Aτj values. However, as it was demonstrated
earlier (see the error bars in Fig. 3b), a systematic time-
independent bias in temperature data can result in notable
deviations of the k∗ estimates.

Sensitivities Aτ for the autumn 2014 domain exhibit a
distinctively different range and pattern of spatio-temporal
change of values with respect to the spring seasons. The rea-
sons for that are not completely understood and elucidation
may require additional empirical data from other autumn sea-
sons. It can be noted that during the period from September
2014 to April 2015 the dominant tendency in the change of
surface temperature was decrease, which induced continuous
cooling of the subsurface profile.

Several patterns in the spatio-temporal distribution of the
sensitivities Aτ can be noted. In most cases the sign of the

sensitivity is positive between the depths of k∗ j−1 and k∗ j
and negative between the depths of k∗ j and k∗ j+1 if k∗ j
is the k value being tested for sensitivity (depth is marked
by the black circle in Fig. 5). This pattern is reversed when
considering depth levels further away from the circles (be-
tween k∗ j−2 and k∗ j−1 and between k∗ j+1 and k∗ j+2) and
the period of alternation roughly corresponds to the spac-
ing between k∗ values, which is 1 m. This result is explained
through changes in the vertical temperature gradient induced
by the temperature perturbations. The overall pattern in the
vertical change of temperature is to increase downwards;
thus a temperature increase at a certain depth results in in-
crease in the temperature gradient just above and decrease
just below that depth. These changes in temperature gradi-
ent are respectively compensated for by negative and posi-
tive deviations in k values. Due to the piecewise linear in-
terpolation of the k profile based on J k∗ values, a perturba-
tion in k∗j also affects the thermal conductivities below and
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above it. Therefore k∗ j−1 and k∗ j+1 adjacent to k∗ will dis-
play the tendency opposite to the one demonstrated by k∗ j to
compensate for the associated changes in the heat flux. This
pattern is also apparent when comparing different panels in
Fig. 5.

In most cases k∗ is most sensitive to temperature errors ca.
0.5–1 m above and below its evaluation level, which is evi-
denced by the more intense colours in the sensitivity fields
found in the vicinity of the black circle markers. The am-
plitude of cycles with alternating sign demonstrated by the
sensitivity Aτ fades away with distance from the perturbed
k∗. The k∗ values found deeper down in the vertical profile
appear to be more sensitive to errors in temperature, as is
seen in more intensive colours around the circular markers
in panels (e)–(h) of Fig. 5 compared to panels (a)–(d) in the
same figure.

4.4 Sensitivity of k∗ to errors in depths of temperature
measurements

The feedback of optimized thermal conductivities to errors in
depths of temperature values used to constrain the optimiza-
tion routine (Az in Eq. 21) is presented in Fig. 6, where differ-
ent panels show results for the five simulation domains. The
colour of a point corresponding to index j and depth z indi-
cates the expected bias in k∗ j found at depth highlighted by
the black circle in column j given a negative bias of −1 cm
in depth of temperature values at depth z. The sensitivities Az
for the lowermost k∗ j values (j = 8 for the spring domains
and j = 6 for the autumn 2014) are significantly larger than
for other k∗ j nodes due to propagation of the corresponding
high Aτ values (Fig. 5g, h) to the Az matrices as is shown in
Eqs. (15) and (21). These results are not shown.

In Fig. 6 blue anomalies in the vicinity of the markers in-
dicate that the largest response of k∗ j can be expected to
depth errors just below and just above the depth zj . This
pattern is expected since the assumed depth perturbations
are negative, which increases the vertical temperature gra-
dient and is compensated for by lower k∗ values to keep the
same heat flux. Secondly, the alternating pattern in the sen-
sitivity of k∗, noted in the previous section, can also be seen
in the Az matrices, particularly for the deeper thermal con-
ductivities with larger indices j : farther away in the vertical
direction from the circular markers the negative anomalies
in Az are replaced by less negative and even positive val-
ues and then switch back to the significantly negative range.
This behaviour of the sensitivity is caused by the piecewise
linear interpolation applied to derive the 0.1 m spaced k pro-
file used in the forward model from 1 m spaced optimized
k∗ values. In an attempt to preserve the heat flux and min-
imize the misfit between measured and simulated measure-
ments the optimization routine will tend to overestimate the
k∗ j+1 and k∗ j−1 values in case k∗ j is forced to be too low
due to the perturbation in depths of temperature values. The
uncertainties Az in Fig. 6 are notably larger above the circu-

lar markers. The thermal conductivities are much more sensi-
tive to errors in depths of temperature values occurring above
the depth level than below because of the accumulation of
the position errors from upper levels to the bottom. Another
reason is probably that the vertical temperature gradients are
larger in the upper part of the profile. At the same time, due
to the influence of the cable weight, thermistor strings can
be expected to experience less coiling in the shallow part of
a borehole, possibly compensating for the larger Az values
there.

Assuming that thermistor strings are in contact with the
borehole walls every L= 1 m (see Eq. 25), the mean values
of δk in Eq. (22) are on the order of−0.02 to 0.07 W (mK)−1

for k∗ 1–k∗ 6 and significantly larger lower down in the pro-
file, where temperature gradients are lower and the number
of available empirical data is less (Table 1). The expected un-
certainty is 3–8 times larger for the domain covering autumn
2014, which is most likely caused by the larger temperature
gradients during the early period of subsurface cooling. It can
be noted that the uncertainty δk in Eq. (22) is scaled by ε in
Eq. (25), suggesting that if L= 0.5 m, the values in Table 1
will increase almost by a factor of 2. The results for the vari-
ance in Table 1 using Eq. (24) show how the variance σ 2

z in
the positional error is magnified as a variance of the error in
k. If σz ≈ ε then

√
Var[δk] ≈ 0.01 for most k values, a rather

small standard deviation.

4.5 Sensitivity of k∗ to errors in density

The results of experiments exploring the sensitivity of op-
timized thermal conductivities to possible errors in density
are presented in Fig. 7. All panels in the figure are domi-
nated by colours corresponding to the positive sensitivity val-
ues, suggesting that the general tendency is an increase in k∗
in response to an overestimation of density in the empirical
dataset. Negative values correspond to k∗ j values found in
the lower part of the profile (j = 6. . .8), which are generally
less reliable.

Thermal conductivity appears to be more sensitive to den-
sity errors occurring above the depth level in question. This
particularly applies to the biases in ρ2. It is still in the upper
part of the subsurface profile were density is relatively low
and the relative importance of a 1 kgm−3 mistake in density
is large. These values are not exceeded by the Aρ1 found
above, most probably because of the constraints imposed by
the upper boundary condition on temperature errors: Aτ is
always zero at the upper boundary of the calculation domain.

In the absence of empirical data to quantify possible er-
rors in density, it can be noted that Aρ values presented in
Fig. 7 can be scaled by any assumed value E[δρ] to derive
errors E[δk] to be expected from k∗ values. It follows that
a bias of 50 kgm−3 will result in a k∗ deviation of up to
0.1 W (mK)−1.
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Figure 6. Sensitivity (Az in Eq. (21)) of effective thermal conductivities k∗ j to errors in depths of temperature values. Panels correspond
to different calculation domains: spring 2012 (a), spring 2013 (b), spring 2014 (c), autumn 2014 (d) and spring 2015 (e). In all panels the
colour of a point in column j and depth z shows the feedback on effective thermal conductivity value k∗ j found at the depth highlighted by
the black (white in d) circle to an error in depth of temperature value (1 cm) made at depth z.

Table 1. Expected deviations of thermal conductivities (E[δk] in Eq. 22) and the corresponding standard deviations (
√

Var[δk]; see Eqs. 23,
24) given the magnitude of thermistor string coiling in the boreholes is expressed by L= 1 m (see Eq. 25) and σz = 1 cm.

E[δk] k∗1 k∗2 k∗3 k∗4 k∗5 k∗6 k∗7 k∗8

Spring 2012 −0.046 −0.040 −0.051 −0.050 −0.045 −0.002 0.054 1.575
Spring 2013 −0.051 −0.044 −0.024 −0.018 −0.008 0.037 0.217 0.926
Spring 2014 −0.021 −0.042 −0.028 −0.045 −0.028 0.010 0.111 −0.103
Autumn 2014 −0.118 −0.132 −0.187 −0.230 −0.244 −0.131
Spring 2015 −0.029 −0.069 −0.020 −0.039 −0.032 −0.016 0.069 0.138
√

Var[δk] k∗1 k∗2 k∗3 k∗4 k∗5 k∗6 k∗7 k∗8

Spring 2012 0.073 0.063 0.077 0.069 0.068 0.074 0.123 1.779
Spring 2013 0.085 0.076 0.041 0.035 0.036 0.07 0.237 1.063
Spring 2014 0.042 0.063 0.051 0.065 0.047 0.061 0.146 0.196
Autumn 2014 0.175 0.189 0.258 0.316 0.331 0.344
Spring 2015 0.051 0.1 0.035 0.06 0.048 0.042 0.087 0.153

4.6 Comparison of k∗ with earlier published results

The relation between optimized effective thermal conductiv-
ities and densities is shown in Fig. 8 using markers, and the
associated linear fit,

k = 0.301 · 10−2ρ− 0.724, (30)

is illustrated by the thick black line. Also shown are the
predictions from similar published fits. The Sturm et al.
(1997) approximation relies on multiple needle probe mea-
surements. The Calonne et al. (2011) and Riche and Schnee-
beli (2013) parameterizations are constrained by k values

quantified using numerical modelling of the effective ther-
mal conductivity tensor based on detailed three-dimensional
micro-tomographic models of snow samples. It can also be
noted that all three parameterizations are based on k mea-
sured in seasonal snow and the datasets included only a few
samples with density above 500 kgm−3, while our results are
based on measurements in firn with generally higher density.

Almost all k∗ values are larger than the effective thermal
conductivities predicted by the first two parameterizations
and the difference increases for larger densities. At the same
time, the linear fit to k∗ and ρ∗ pairs appears to be closest
to the Riche and Schneebeli (2013) parameterization. The
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Figure 7. Sensitivity (Aρ in Eq. 28) of effective thermal conductivities k∗ j to errors in density. Panels correspond to different calculation
domains: spring 2012 (a), spring 2013 (b), spring 2014 (c), autumn 2014 (d) and spring 2015 (e). In all panels the colour of a point in column
j and depth z shows the feedback of effective thermal conductivity value k∗ j found at the depth highlighted by the white circle to a unit
error in density (1 kgm−3) made at depth z.

Figure 8. Relation between effective thermal conductivities k and
densities ρ. Markers illustrate the results of the optimization rou-
tine; the black line shows the linear fit based on all k∗–ρ∗ pairs. The
light blue, ruby and green curves show quadratic k = f (ρ) func-
tions according to Sturm et al. (1997), Calonne et al. (2011), and
Riche and Schneebeli (2013).

latter is based on measurements made on faceted and depth
hoar samples developing under a strong temperature gradient
and resulting in anisotropy of the bulk thermal conductivity
with larger k in the vertical direction. At Lomonosovfonna,
the faceted crystals developing close to the surface are likely
affected by the temperate conditions during the melt sea-
son. Below the depth of ca. 1–2 m the vertical temperature
gradients are not as high and the mobility of water vapour

in pores is reduced due to higher density, which altogether
should limit the development of microstructural anisotropy.
At the same time, it can be hypothesized that the preferential
water flow in snow/firn, reported from the site (Marchenko
et al., 2017b), can result in prominent vertically elongated
structures below the surface of Lomonosovfonna, favouring
anisotropy at a larger spatial scale and faster heat transfer in
the vertical direction. The obvious variability in dependence
between k∗ and ρ∗ values across different domains is a fur-
ther indication of the fact that the vertical dynamics in k∗ are
caused not only by the changes in density, and proxies de-
scribing the snow/firn structure at the scale of processes ac-
tive in its metamorphism are to be included in the k = f (ρ)
functions along with the density (Löwe et al., 2013). At the
scale of grains such data can be derived using X-ray tomog-
raphy (e.g. Kaempfer et al., 2005) and at the scale of 0.1–1 m
detailed radar surveys can be used (e.g. Dunse et al., 2008;
Marchenko et al., 2017a).

The findings regarding effective thermal conductivity val-
ues presented above can also be compared with the results
of Giese and Hawley (2015), who applied Fourier analysis to
continuous temperature measurements and derived the ther-
mal diffusivity value (κ) of 25± 3 m2 yr−1 in the top 30 m
of firn pack at Summit Station, Greenland. Based on our op-
timized effective thermal conductivity (k∗) and density (ρ∗)
values and the specific heat capacity of ice (C) at −10 ◦C
(Cuffey and Paterson, 2010, p. 400), the thermal diffusivity
(κ∗) is calculated as κ∗ = k∗(ρ∗C)−1. The resulting κ∗ val-
ues lie in the range from 7.55 to 48.77 m2 yr−1 with the mean
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value and standard deviations of 25.48 and 7.52 m2 yr−1, re-
spectively, providing a prominent match with the results from
Giese and Hawley (2015). It can be noted that quantification
of k∗ using an optimization technique requires a much less
extensive dataset in terms of time and depth coverage. Fur-
thermore, since infiltration of meltwater in the summer in-
terrupts the conductive heat exchange in firn at Lomonosov-
fonna, it is not possible to apply Fourier analysis used by
Giese and Hawley (2015) on our data.

5 Conclusions

The evolution of subsurface temperature was measured in
firn at Lomonosovfonna, Svalbard, using several thermis-
tor strings during April 2012 and July 2015. The data cover
five periods when the subsurface profile is at least partly at
subfreezing conditions. Combined with the density measure-
ments from four cores it was used to reconstruct the effective
thermal conductivity and the density of the firn layers. For
that we applied an optimization routine minimizing the mean
squared difference between the measured and simulated tem-
perature evolutions and the measured and computed density.

The optimized effective thermal conductivity k∗ of the firn
pack at Lomonosovfonna varies from 0.4 to 1.05 W (mK)−1

increasing downwards in a maximal likelihood approach for
all the time periods. According to the results of sensitivity
analysis, k∗ is not very sensitive to systematic temperature
offsets. Overestimation of the separation between sensors re-
sulting from possible tortuosity of the cable in the borehole
leads to overestimation of the k∗ values. Positive deviation in
density estimates also results in overestimation of the k∗ val-
ues, while negative density biases lead to an underestimation
of effective thermal conductivity.

The k∗ results are notably higher than the k values pre-
dicted by widely used empirical parameterizations based on
the firn density measurements (Sturm et al., 1997; Calonne
et al., 2011) and originally constrained by measurements of
ρ and k in seasonal snow. This suggests a possible underes-
timation of the subsurface heat fluxes by firn models relying
on the equations. In regions with a climate similar to that ob-
served in Svalbard, this is of particular importance for the
cold season as the period of conductive cooling is signifi-
cantly longer than conductive warming occurring in spring
before the onset of melt. Thus the refreezing capacity of the
firn pack at Lomonosovfonna by the onset of melt is likely
to be underestimated when simulated using the parameteri-
zations by Sturm et al. (1997) and Calonne et al. (2011).

Code availability. The subsurface density and temperature data
are available for download from Marchenko et al. (2019b, a).
The computer code used for calculations is available from
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