Articles | Volume 13, issue 6
The Cryosphere, 13, 1743–1752, 2019
https://doi.org/10.5194/tc-13-1743-2019
The Cryosphere, 13, 1743–1752, 2019
https://doi.org/10.5194/tc-13-1743-2019

Research article 28 Jun 2019

Research article | 28 Jun 2019

Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology

Shugui Hou et al.

Related authors

Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021,https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021,https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018,https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
The first luminescence dating of Tibetan glacier basal sediment
Zhu Zhang, Shugui Hou, and Shuangwen Yi
The Cryosphere, 12, 163–168, https://doi.org/10.5194/tc-12-163-2018,https://doi.org/10.5194/tc-12-163-2018, 2018
Short summary
Impact of icebergs on net primary productivity in the Southern Ocean
Shuang-Ye Wu and Shugui Hou
The Cryosphere, 11, 707–722, https://doi.org/10.5194/tc-11-707-2017,https://doi.org/10.5194/tc-11-707-2017, 2017
Short summary

Related subject area

Discipline: Glaciers | Subject: Ice Cores
Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021,https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021,https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021,https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021,https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020,https://doi.org/10.5194/tc-14-881-2020, 2020

Cited articles

An, W., Hou, S., Zhang, W., Wu, S., Xu, H., Pang, H., Wang, Y., and Liu, Y.: Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records, Sci. Rep., 6, 32813, https://doi.org/10.1038/srep32813, 2016. 
Beniston, M., Diaz, H. F., and Bradley, R. S.: Climatic change at high elevation sites: an overview, Clim. Change, 36, 233–251, https://doi.org/10.1023/A:1005380714349, 1997. 
Bolzan, J.: Ice flow at the Dome C ice divide based on a deep temperature profile, J. Geophys. Res., 90, 8111–8124, 1985. 
Cheng, H., Zhang, P., Spötl, C., Edwards, R., Cai, Y., Zhang, D., Sang, W., Tan, M., and An, Z.: The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years, Geophys. Res. Lett. 39, L01705, https://doi.org/10.1029/2011gl050202, 2012. 
Cheng, H., Spötl, C., Breitenbach, S. F. M., Sinha, A., Wassenburg, J. A., Jochum, K. P., Scholz, D., Li, X., Yi, L., Peng, Y., Lv, Y., Zhang, P., Votintseva, A., Loginov, V., Ning, Y., Kathayat, G., and Edwards, R. L.: Climate variations of central Asia on orbital to millennial timescales, Sci. Rep., 6, 36975, https://doi.org/10.1038/srep36975, 2016. 
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.